Hostname: page-component-745bb68f8f-d8cs5 Total loading time: 0 Render date: 2025-01-27T01:55:34.808Z Has data issue: false hasContentIssue false

Oxide Ion Conduction in Oxygen Rich Doped Ba2In2O5+δ Brownmillerite

Published online by Cambridge University Press:  01 February 2011

Aurélie Rolle
Affiliation:
Laboratoire de Cristallochimie et Physicochimie du Solide UMR CNRS 8012 ENSCL, Université des Sciences et Technologies de Lille, B.P. 108, 59652 Villeneuve d'Ascq Cedex, France
Nambi V. Giridharan
Affiliation:
Laboratoire de Cristallochimie et Physicochimie du Solide UMR CNRS 8012 ENSCL, Université des Sciences et Technologies de Lille, B.P. 108, 59652 Villeneuve d'Ascq Cedex, France
Pascal Roussel
Affiliation:
Laboratoire de Cristallochimie et Physicochimie du Solide UMR CNRS 8012 ENSCL, Université des Sciences et Technologies de Lille, B.P. 108, 59652 Villeneuve d'Ascq Cedex, France
Francis Abraham
Affiliation:
Laboratoire de Cristallochimie et Physicochimie du Solide UMR CNRS 8012 ENSCL, Université des Sciences et Technologies de Lille, B.P. 108, 59652 Villeneuve d'Ascq Cedex, France
Rose-Noëlle Vannier
Affiliation:
Laboratoire de Cristallochimie et Physicochimie du Solide UMR CNRS 8012 ENSCL, Université des Sciences et Technologies de Lille, B.P. 108, 59652 Villeneuve d'Ascq Cedex, France
Get access

Abstract

In order to stabilize the fast oxide ion conducting properties of the high temperature form of Ba2In2O5 at lower temperature, oxygen rich doped Ba2In2O5+δ brownmillerite were prepared by partial substitution of Ba and In with higher valence cation. Vanadium, niobium, tantalum, molybdenum and tungsten were introduced on indium site and bismuth on barium site. Solid solutions were evidenced in all the cases. They were characterized by high temperature X-ray diffraction and impedance spectroscopy. A neutron diffraction study was carried out and allowed to extract preferential oxygen pathways in these materials.

Type
Research Article
Copyright
Copyright © Materials Research Society 2005

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Goodenough, J.B., Ruiz-Diaz, J.E., Zhen, Y.S, Solid State Ionics 44, 21 (1990)Google Scholar
2. Speakman, S.A., Richardson, J.W., Mitchell, B.J., Misture, S. T., Solid State Ionics 149, 247 (2002)Google Scholar
3. Petricek, V., Dusek, M., the Crystallographic Computing System JANA2000, Institute of Physics, Praha, Czech Republic (2004)Google Scholar
4. Manthiram, A., Kuo, J.F., Goodenough, J.B., Solid State Ionics 62, 225 (1993)Google Scholar
5. Goodenough, J.B., Manthiram, A., Kuo, J.F., Mater. Chem. Phys. 35, 221 (1993)Google Scholar
6. Zhang, G.B., Smyth, D.M., Solid State Ionics 82, 153 (1995)Google Scholar
7. Fisher, C. A. J., Derby, B., Brook, R. J., Br. Ceram. Proc. 56, 25 (1996)Google Scholar
8. Yamamura, H., Hamazaki, H., Kakinuma, K., Mori, T., Haneda, H., J. of the Korean Physical Society 35, 200 (1999)Google Scholar
9. Kakinuma, K., Yamamura, H., Haneda, H., Atake, T., J. of Thermal Analysis and Calorimetry 57, 737 (1999)Google Scholar
10. Uchimoto, Y., Yao, T., Takagi, H., Inagaki, T., Yoshida, H., Electrochemistry 68, 531 (2000)Google Scholar
11. Kakinuma, K., Yamamura, H., Haneda, H., Atake, T., Solid State Ionics 140, 301 (2001)Google Scholar