Hostname: page-component-745bb68f8f-grxwn Total loading time: 0 Render date: 2025-01-27T00:50:26.806Z Has data issue: false hasContentIssue false

Oxidation Kinetics in SrTiO3 Homoepitaxy

Published online by Cambridge University Press:  10 February 2011

X.D. Zhu
Affiliation:
Department of Physics, University of California, Davis, CA 95616
Weidong Si
Affiliation:
Department of Physics, The Penn State University, University Park, PA 16802
X.X. Xi
Affiliation:
Department of Physics, The Penn State University, University Park, PA 16802
Qidu Jiang
Affiliation:
Department of Chemistry, University of Houston, Houston, TX 77204-5641
Get access

Abstract

Using an oblique-incidence optical reflectivity difference technique, we investigated kinetic processes in SrTiO3 homoepitaxy on SrTiO3(001) under pulsed laser deposition conditions. Depending upon growth temperature and oxygen ambient pressure, we found that the oxidation of an as-grown SrTiO3 monolayer may take a much longer time to complete than the recrystallization of the monolayer. The oxidation reaction was found to be characterized by an effective activation energy barrier of 1.35 eV and a large pre-exponential factor.

Type
Research Article
Copyright
Copyright © Materials Research Society 2000

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1 Klausmerier-Brown, M.E. et al. , Appl. Phys. Lett. 60, 2806 (1992).Google Scholar
2 Kawasaki, M. et al. , Science 266, 1540 (1994).Google Scholar
3 Koster, G. et al. , Appl. Phys. Lett. 74, 3729 (1999).Google Scholar
3 Lippmaa, M. et al. , Appl. Phys. Lett. 74, 3543 (1999).Google Scholar
5 Karl, H. and Stritzker, B., Phys. Rev. Lett. 69, 2939 (1992).Google Scholar
6 Bozovic, I. and Eckstein, J.N., Appl. Surf. Sci. 113, 189 (1997).Google Scholar
7 Neave, J.H. et al. , Appl. Phys. Lett. 47, 100 (1985).Google Scholar
8 Ju, H.L. et al. , Phys. Rev. B 51, 6143 (1994).Google Scholar
9 Waser, R. and Smyth, D.M., in Ferroelectric thin films: synthesis and basic properties, edited by Araujo, C.P. de, Scott, J.F., and Taylor, G.W. (Gordon and Breach Publishers, Amsterdam, 1996), p. 47.Google Scholar
10 Sydow, J.P. et al. , Appl. Phys. Lett. 72, 3512 (1998).Google Scholar
11 Si, W., Li, H.-C., and Xi, X.X., Appl. Phys. Lett. 74, 2839 (1999).Google Scholar
12 Hirata, A. et al. , Surf. Sci. 310, 89 (1994).; Y. Haruyama el al., J. Electr. Spectr. Rel. Phenom. 88-89, 695 (1998).; R. Courths et al., Solid State Commun. 70, 1047 (1989).Google Scholar
13 Kimura, S. et al. , Phys. Rev. B 51, 11049 (1995).Google Scholar
14 Tezuka, Y. et al. , J. Phys. Soc. Jpn. 63, 347 (1994).Google Scholar
15 Tambo, T. et al. , J. Appl. Phys. 86, 3213 (1999).Google Scholar
16 Wong, A. and Zhu, X.D., Appl. Phys. A 63, 1 (1996).Google Scholar
17 Zhu, X.D. et al. , Phys. Rev. B 57, 2514 (1998).Google Scholar
18 Zhu, X.D. et al. , Appl. Phys. Lett. 74, 3540 (1999).Google Scholar
19 Zhu, X.D. and Nabighian, E., Appl. Phys. Lett. 73, 2736 (1998).Google Scholar
20 Bear, W.S., Phys. Rev. B 144, 734 (1964).Google Scholar
21 Chan, N. et al. , J. Electrochem. Soc. 128, 1762 (1981).Google Scholar
22 de Mongeot, E.B., Rocca, M., and Valbusa, U., Surf. Sic. 363, 68 (1996).; E.B. de Mongeot, A. Cupolillo, U. Valbusa, and M. Rocca, Chem. Phys. Lett. 270, 345 (1997).Google Scholar