Hostname: page-component-745bb68f8f-d8cs5 Total loading time: 0 Render date: 2025-01-26T01:35:39.880Z Has data issue: false hasContentIssue false

Oxidation Induced Giant Modulation in the Luminescence of Colloidal Amorphous Porous Silicon Nanoparticles

Published online by Cambridge University Press:  11 May 2015

Jehad K. El Demellawi
Affiliation:
Division of Physical Sciences and Engineering, King Abdullah University of Science and Technology, Thuwal, K.S.A.
Dalaver H. Anjum
Affiliation:
Imaging and Characterization Laboratory, King Abdullah University of Science and Technology, Thuwal, K.S.A.
Sahraoui Chaieb
Affiliation:
Division of Physical Sciences and Engineering, King Abdullah University of Science and Technology, Thuwal, K.S.A.
Get access

Abstract

The emission of crystalline silicon nanoparticles as well as nanowires can be tuned by varying their diameters. The diameter selection is achieved via a difficult chemical procedure that necessitates filtration which cannot be easily scaled up. Herein, we report a novel approach for producing and tuning the emission of freestanding colloidal of amorphous porous silicon nanoparticles (which should not be confused with bulk amorphous silicon nor with porous silicon) via a controlled oxidation without relying on size of nanoparticles. This oxidation increases local strain in the disordered network that causes orbital interactions which modifies the band-gap but a new hybridization.

Type
Articles
Copyright
Copyright © Materials Research Society 2015 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Canham, L. T., Nature, 408, 411412 (2000).CrossRefGoogle Scholar
Zheng, J. P., Jiao, K. L., Shen, W. P., Anderson, W. A., and Kwok, H. S., Appl. Phys. Lett. 61, 459461 (1992).CrossRefGoogle Scholar
Ramiro-Manzano, F., Fenollosa, R., Xifré-Pérez, E., Garín, M., and Meseguer, F., Adv. Mater. 23, 30223025 (2011).CrossRefGoogle Scholar
Erogbogbo, F., Lin, T., Tucciarone, P. M., LaJoie, K. M., Lai, L., Patki, G. D., Prasad, P. N., and Swihart, M. T., Nano Lett. 13, 451456 (2013).CrossRefGoogle Scholar
Xue, M., Zhong, X., Shaposhnik, Z., Qu, Y., Tamanoi, F., Duan, X., and Zink, J. I., J. Am. Chem. Soc. 133, 87988801 (2011).CrossRefGoogle Scholar
Rong, J., Masarapu, C., Ni, J., Zhang, Z., and Wei, B., ACS Nano 4, 46834690 (2010).CrossRefGoogle Scholar
Ge, M., Rong, J., Fang, X., and Zhou, C., Nano Lett. 12, 23182323 (2012).CrossRefGoogle Scholar
Tsang, C. K., Kelly, T. L., Sailor, M. J., and Li, Y. Y., ACS Nano 6, 1054610554 (2012).CrossRefGoogle Scholar
Belomoin, G., Therrien, J., Smith, A., Rao, S., Twesten, R., Chaieb, S., Nayfeh, M. H., Wagner, L., and Mitas, L., Appl. Phys. Lett. 80, 841843 (2002).CrossRefGoogle Scholar
Wolkin, M. V., Jorne, J., Fauchet, P. M., Allan, G., and Delerue, C., Phys. Rev. Lett. 82, 197200 (1999).CrossRefGoogle Scholar
Heitmann, J., Müller, F., Zacharias, M., and Gösele, U., Adv. Mater. 17, 795803 (2005).CrossRefGoogle Scholar
Kanemitsu, Y., Phys. Rep. 263, 191 (1995).CrossRefGoogle Scholar
Cullis, A. G., Canham, L. T., and Calcott, P. D., J. Appl. Phys. 82, 909965 (1997).CrossRefGoogle Scholar
Dudley, M. E., and Kolasinski, K. W., Phys. Status Solidi A 206, 12401244 (2009).CrossRefGoogle Scholar
Beeman, D., Tsu, R., and Thorpe, M. F., Phys. Rev. B: Condens. Matter Mater. Phys. 32, 874878 (1985).CrossRefGoogle Scholar
Treacy, M. M. J., and Borisenko, K. B., Science 335, 950953 (2012).CrossRefGoogle Scholar
Mughal, A., El-Demellawi, J. K. and, Chaieb, S., Phys. Chem. Chem. Phys. 16, 2527325279 (2014).CrossRefGoogle Scholar
Becker, W., The bh TCSPC Handbook, Becker & Hickl Gmbh, Berlin, (2010).Google Scholar
Malik, M. A., O’Brien, P., Noragera, S., and Smith, J., J. Mater. Chem. 13, 25912595 (2003).CrossRefGoogle Scholar
Bawendi, M. G., Carroll, P. J., Wilson, W., and Brus, L. E., J. Chem. Phys. 96, 946954 (1992).CrossRefGoogle Scholar
Dori, L., Bruley, J., DiMaria, D. J., Batson, P. E., Tornello, J., and Arienzo, M., J. Appl. Phys. 69, 23172324 (1991).CrossRefGoogle Scholar
Lockwood, D. J., Lu, Z. H., and Baribeau, J.-M., Phys. Rev. Lett. 76, 539541 (1996).CrossRefGoogle Scholar
Roorda, S., Sinke, W. C., Poate, J. M., Jacobson, D. C., Dierker, S., Dennis, B. S., Eaglesham, D. J., Spaepen, F., and Fuoss, P., Phys. Rev. B 44, 37023725 (1991).CrossRefGoogle Scholar
Roura, P., Farjas, J., and Cabarrocas, P. R. I., J. Appl. Phys. 104, 073521 (2008).CrossRefGoogle Scholar
Keating, P. N., Phys. Rev. 145, 637645 (1966).CrossRefGoogle Scholar
Saito, T., Karasawa, T., and Ohdomari, I., J. Non-Cryst. Solids 50, 271 (1982).CrossRefGoogle Scholar
Wehrspohn, R. B., Chazalviel, J.-N., Ozanam, F. and Solomon, I., Eur. Phys. J. B 8, 179193 (1999).CrossRefGoogle Scholar