Hostname: page-component-745bb68f8f-hvd4g Total loading time: 0 Render date: 2025-01-12T09:39:25.948Z Has data issue: false hasContentIssue false

Optimizing Process Variables to Control Fiber Diameter of Electrospun Polycaprolactone Nanofiber Using Factorial Design

Published online by Cambridge University Press:  14 March 2011

Saida P. Khan
Affiliation:
Mechanical Engineering, Wayne State University, Detroit, MI 48202, U.S.A.
Kadambari Bhasin
Affiliation:
Biomedical Engineering, Wayne State University, Detroit, MI 48202, U.S.A.
Golam M. Newaz
Affiliation:
Mechanical Engineering, Wayne State University, Detroit, MI 48202, U.S.A.
Get access

Abstract

In the electrospinning process, fibers ranging from 50 nm to 1000 nm or greater can be produced by applying an electric potential to a polymeric solution [1, 2]. Our group has studied the fabrication of electro-spun Poly-caprolactone (PCL) nanofiber consisting of a range of fiber diameter (nm-um) and pore sizes. PCL is a biocompatible, FDA approved and biodegradable [3, 4] polymer. As a solvent we have used 2,2,2-trifluoroethanol (TFE) for its biocompatibility, conductivity and high dielectric constant. The electrospinning technique consists of a simple setup with a number of variables working in a complex and unpredictable way. The variables affecting fiber diameter are polymer concentration in the solution, flow rate, applied voltage, tip to collector distance, diameter of the needle/capillary, polymer/solvent dielectric constant etc. In our study we have found that concentration of the solution and molecular weight of the polymer are the most important parameters for forming the nanofibers and viscosity is important for the fiber diameter. To optimize so many variables to control the fiber diameter, we have used the factorial design method. The study is important for the fabrication of biomimetic scaffold for vascular implant and tissue engineering application.

Type
Research Article
Copyright
Copyright © Materials Research Society 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Huang, Z.-M., Zhang, Y. Z., Kotaki, M., Ramakrishna, S., Composites Science and Technology 63, 22232253 (2003).Google Scholar
2. Li, D., Xia, Y., Advanced Materials 16, 11511170 (2004).Google Scholar
3. Pitt, G. G., Gratzl, M. M., Kimmel, G. L., Surles, J., Sohindler, A., Biomaterials 2, 215220 (1981).Google Scholar
4. Serrano, M. C., Pagani, R., Vallet-Regí, M., Peña, J., Rámila, A., Izquierdo, I., Portolés, M. T., Biomaterials 25, 56035611 (2004).Google Scholar
5. Abrams, G. A., Goodman, S. L., Nealey, P. F., Franco, M., Murphy, C. J., Cell Tissue Res 299, 3946 (2000).Google Scholar
6. Abrams, G. A., Schaus, S. S., Goodman, S. L., Nealey, P. F., Murphy, C. J., Cornea 19, 5764 (2000).Google Scholar
7. Kim, K., Yu, M., Zong, X., Chiu, J., Fang, D., Seo, Y.-S., Hsiao, B. S., Chu, B., Hadjiargyrou, M., Biomaterials 24, 49774985 (2003).Google Scholar
8. Min, B.-M., Lee, G., Kim, S. H., Nam, Y. S., Lee, T. S., Park, W. H., Biomaterials 25, 12891297 (2004).Google Scholar
9. Zong, X., Ran, S., Fang, D., Hsiao, B. S., Chu, B., Polymer 44, 49594967 (2003).Google Scholar
10. Park, J., Kim, B., Tae, H., Kim, I., Kim, H., Khi, M., Fibers and Polymers 10, 419424 (2009).Google Scholar
11. Li, W.-J., Laurencin, C. T., Caterson, E. J., Tuan, R. S., Ko, F. K., Journal of Biomedical Materials Research 60, 613621 (2002).Google Scholar
12. Zhu, Y., Gao, C., Liu, X., Shen, J., Biomacromolecules 3, 13121319 (2002).Google Scholar
13. Journal of Biomaterials Science, Polymer Edition 16, 15371555 (2005).Google Scholar
14. Sun, H., Mei, L., Song, C., Cui, X., Wang, P., Biomaterials 27, 17351740 (2006).Google Scholar
15. King, E., Cameron, R. E., Journal of Applied Polymer Science 66, 16811690 (1997).Google Scholar
16. Zong, X.-H., Wang, Z.-G., Hsiao, B. S., Chu, B., Zhou, J. J., Jamiolkowski, D. D., Muse, E., Dormier, E., Macromolecules 32, 81078114 (1999).Google Scholar
17. Journal of Nanoscience and Nanotechnology 6, 25912607 (2006).Google Scholar
18. Lee, K. H., Kim, H. Y., Khil, M. S., Ra, Y. M., Lee, D. R., Polymer 44, 12871294 (2003).Google Scholar
19. Zong, X., Kim, K., Fang, D., Ran, S., Hsiao, B. S., Chu, B., Polymer 43, 44034412 (2002).Google Scholar
20. Reneker, D. H., Kataphinan, W., Theron, A., Zussman, E., Yarin, A. L., Polymer 43, 67856794 (2002).Google Scholar
21. Zhang, Y. Z., Venugopal, J., Huang, Z. M., Lim, C. T., Ramakrishna, S., Biomacromolecules 6, 25832589 (2005).Google Scholar
22. Bhardwaj, N., Kundu, S. C., Biotechnology Advances 28, 325347 (2010).Google Scholar
23. Kim, B., Park, H., Lee, S.-H., Sigmund, W. M., Materials Letters 59, 829832 (2005).Google Scholar
24. Zhang, C., Yuan, X., Wu, L., Han, Y., Sheng, J., European Polymer Journal 41, 423432 (2005).Google Scholar
25. Ki, C. S., Baek, D. H., Gang, K. D., Lee, K. H., Um, I. C., Park, Y. H., Polymer 46, 50945102 (2005).Google Scholar
26. Geng, X., Kwon, O.-H., Jang, J., Biomaterials 26, 54275432 (2005).Google Scholar
27. Yördem, O. S., Papila, M., Menceloglu, Y. Z., Materials & Design 29, 3444 (2008).Google Scholar
28. Haghi, A. K., Akbari, M., physica status solidi (a) 204, 18301834 (2007).Google Scholar
29. Demir, M. M., Yilgor, I., Yilgor, E., Erman, B., Polymer 43, 33033309 (2002).Google Scholar
30. Kanjanapongkul, K., Wongsasulak, S., Yoovidhya, T., Chemical Engineering Science 65, 52175225 (2010).Google Scholar
31. Okuno, Y., Minagawa, M., Matsumoto, H., Tanioka, A., Journal of Molecular Structure: THEOCHEM 904, 8390 (2009).Google Scholar
32. Shafik, T., Howard, A. G., Moffatt, F., Wilson, I. D., Journal of Chromatography A 841, 127132 (1999).Google Scholar
33. Son, W. K., Youk, J. H., Lee, T. S., Park, W. H., Polymer 45, 29592966 (2004).Google Scholar
34. Baji, A., Mai, Y.-W., Wong, S.-C., Abtahi, M., Chen, P., Composites Science and Technology In Press, Corrected Proof, (2010).Google Scholar
35. Wannatong, L., Sirivat, A., Supaphol, P., Polymer International 53, 18511859 (2004).Google Scholar
36. Yuan, X., Zhang, Y., Dong, C., Sheng, J., Polymer International 53, 17041710 (2004).Google Scholar
37. Kim, K.-H., Jeong, L., Park, H.-N., Shin, S.-Y., Park, W.-H., Lee, S.-C., Kim, T.-I., Park, Y.-J., Seol, Y.-J., Lee, Y.-M., Ku, Y., Rhyu, I.-C., Han, S.-B., Chung, C.-P., Journal of Biotechnology 120, 327339 (2005).Google Scholar
38. Zuo, W., Zhu, M., Yang, W., Yu, H., Chen, Y., Zhang, Y., Polymer Engineering & Science 45, 704709 (2005).Google Scholar
39. Sill, T. J., von Recum, H. A., Biomaterials 29, 19892006 (2008).Google Scholar
40. Zhang, L., Menkhaus, T. J., Fong, H., Journal of Membrane Science 319, 176184 (2008).Google Scholar
41. Fong, H., Chun, I., Reneker, D. H., Polymer 40, 45854592 (1999).Google Scholar