Hostname: page-component-745bb68f8f-b6zl4 Total loading time: 0 Render date: 2025-01-26T00:56:06.823Z Has data issue: false hasContentIssue false

Optimization of the a-SiC p-layer in a-Si:H-based n-i-p Photodiodes

Published online by Cambridge University Press:  01 February 2011

Yuri Vygranenko
Affiliation:
yuri.vy@gmail.com, ISEL, R Consulheiro Emidio Navarro 1, ISEL-DEETC, Lisbon, P1949-014, Portugal
Andrei Sazonov
Affiliation:
asazonov@uwaterloo.ca, University of Waterloo, Electrical and Computer Engineering, Waterloo, Canada
Gregory Heiler
Affiliation:
gregory.heiler@carestreamhealth.com, Carestream Health Inc., Rochester, New York, United States
Timothy Tredwell
Affiliation:
timothy.tredwell@carestreamhealth.com, United States
Manuela Vieira
Affiliation:
mv@isel.ipl.pt, ISEL, DEETC, R. Conselheiro Emídio Navarro, Lisbon, 1954-114, Portugal, +351218317180, +351218317114
Arokia Nathan
Affiliation:
anathan@ucl.ac.uk, University College London, London Centre for Nanote, 17-19 Gordon St, London WC1H 0AH, London, WC1H 0AH, United Kingdom
Get access

Abstract

Our work is aimed at enhancing the external quantum efficiency (EQE) of n-i-p photodiodes by reducing the absorption losses in the p-layer and the recombination losses in the p-i interface. We have applied boron-doped and undoped hydrogenated amorphous silicon carbon alloy (a-SiC:H) grown in hydrogen-diluted, silane-methane plasma to both the p-layer and undoped buffer layer, thus tailoring the p-i interface. The current-voltage, capacitance-voltage, and spectral-response characteristics of fabricated photodiodes are correlated with the doping level, optical band gap, and deposition conditions for a-SiC:H layers. The optimized device exhibits a leakage current of about 110 pA/cm2 at the reverse bias of 5 V, and a peak value of 89% EQE at a wavelength of 530 nm. At shorter wavelengths, the EQE decreases down to 56% at a 400 nm wavelength. Calculations of transmission/reflection losses at the front of the photodiode show that observed short-wavelength sensitivity enhancement can be attributed to improved separation of electron-hole pairs in the p-layer depletion region.

Type
Research Article
Copyright
Copyright © Materials Research Society 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[1] Street, R. A., Ed., Technology and Applications of Amorphous Silicon (Berlin: Springer-Verlag, 2000).Google Scholar
[2] Beutel, J., Kundel, H. L., and Metter, R. Van, Eds., Handbook of Medical Imaging, (Washington, DC.: SPIE Press, 2000).Google Scholar
[3] Stiebig, H., Siebke, F., Beyer, W., Beneking, C., Rech, B., and Wagner, H., Sol. Energy Mater. Sol. Cells 48, 351 (1997).Google Scholar
[4] Pearce, J. M., Koval, R. J., Ferlauto, A. S., , R. W. and Collins, , Appl. Phys. Lett. 77, 3093 (2000).Google Scholar
[5] Vet, B. and Zeman, M., Thin Solid Films 516, 6873 (2008).Google Scholar
[6] Munyeme, G., Zeman, M., Schropp, R. E. I., and Weg, W. F. van der, Phys. Stat. Sol. (c) 1, 2298 (2004).Google Scholar
[7] Servati, P., Vygranenko, Y., and Nathan, A., J. Appl. Phys. 96, 7578 (2004).Google Scholar
[8] Chang, J. H., Vygranenko, Y., and Nathan, A., J. Vac. Sci. Technol. A, 22, 971 (2004).Google Scholar
[9] Chen, I. and Lee, S., J. Appl. Phys. 53, 1045 (1982).Google Scholar
[10] Sakai, H., Yoshida, T., Fujikake, S., Hama, T., and Ichikawa, Y., J. Appl. Phys. 67, 3494 (1990).Google Scholar
[11] Nasuno, Y., Kondo, M., Matsuda, A., Fukuhori, H., and Kanemitsu, Y., Appl.Phys. Lett. 81, 3155 (2002).Google Scholar
[12] Kramer, N. and Berkel, C. van, Appl. Phys. Lett. 64, 1129 (1994).Google Scholar