Hostname: page-component-745bb68f8f-grxwn Total loading time: 0 Render date: 2025-01-11T19:41:57.706Z Has data issue: false hasContentIssue false

A Novel Surface Topographical Concept for Bone Implant

Published online by Cambridge University Press:  28 January 2011

G. Munir
Affiliation:
Department of Mechanical Engineering, University College London, Torrington Place, London WC1E 7JE, U.K.
L. Di Silvio
Affiliation:
Biomaterials, Biomimetics and Biophotonics, King’s College Dental Institute at Guy’s, King’s and St. Thomas’ Hospitals, Floor 17, Guy’s Tower, London SE1 9RT, U.K.
M.J. Edirisinghe
Affiliation:
Department of Mechanical Engineering, University College London, Torrington Place, London WC1E 7JE, U.K.
W. Bonfield
Affiliation:
Department of Materials Science and Metallurgy, University of Cambridge, Pembroke Street Cambridge B2 QZ U.K.
J. Huang
Affiliation:
Department of Mechanical Engineering, University College London, Torrington Place, London WC1E 7JE, U.K.
Get access

Abstract

Template-assisted electrohydrodynamic atomization (TAEA) spraying deposition, a recently developed and an electric-driven jet-based technique has been used to prepare bioactive surface topography on titanium (Ti). Nanometer-scaled SiHA (nanoSiHA), which closely resembles the bone mineral, has been synthesized and deposited on Ti surfaces with a range of patterns, such as pillars and tracks. A human osteoblast (HOB) cell model has been used to evaluate the in vitro cellular responses to nanoSiHA deposition. alamarBlue™ assay showed that nanoSiHA patterns are able to encourage the attachment and growth of HOB cells in comparison to those of nanoSiHA coating. The preferential growth of HOB cells was found along and across the track, HOB cells were also found to stretch between two tracks. Image analysis of HOB cell responses to the size of nanoSiHA pattern showed that the length of HOB cells was proportional to the gaps between the tracks until reaching the maximum length of 110 μm. The results indicate that the distance between the structures is paramount over the width. Our study will pave the way to control and guide cellular responses for new generation of bone implants.

Type
Research Article
Copyright
Copyright © Materials Research Society 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Carlisle, E. M., Science 178, 619621 (1972)10.1126/science.178.4061.619Google Scholar
2. Vallet-Regi, M. and Gonzalez-Calbet, J. M., Progress in Solid State Chemistry, 32, 131 (2004)10.1016/j.progsolidstchem.2004.07.001Google Scholar
3. Porter, A. E., Patel, N., Skepper, J. N., Best, S. M., and Bonfield, W., Bioceramics 24, 46094620 (2003)Google Scholar
4. Hing, K., Revell, P., Smith, N., and Buckland, T., Biomaterials 27, 50145026 (2006)10.1016/j.biomaterials.2006.05.039Google Scholar
5. Curtis, A. and Wilkinson, C., Topographical control of cells Biomaterials 18, 1573 (1997)10.1016/S0142-9612(97)00144-0Google Scholar
6. Li, X., Huang, J., and Edirisinghe, M. J., J. R. Soc. Interface 5, 253257 (2008)10.1098/rsif.2007.1162Google Scholar
7. Munir, G., Huang, J., Edirisinghe, M. J., Koller, G., Di Silvio, L. and Bonfield, W., The Pathway to Intelligent Implants: Osteoblast Response to nano Silicon Doped Hydroxyapatite Patterning, accepted by J. R. Soc. Interface Google Scholar
8. Kam, L. and Boxer, S. G., J. Biomed. Mater. Res., 55(4) 487495(2001)10.1002/1097-4636(20010615)55:4<487::AID-JBM1041>3.0.CO;2-73.0.CO;2-7>Google Scholar