Hostname: page-component-745bb68f8f-hvd4g Total loading time: 0 Render date: 2025-01-12T09:33:33.905Z Has data issue: false hasContentIssue false

A Novel Integrated MEMS Process Using Fluorocarbon Films Deposited With a Deep Reactive Ion Etching (DRIE) Tool

Published online by Cambridge University Press:  10 February 2011

A. A. Ayón
Affiliation:
Microsystems Technology Laboratories Massachusetts Institute of Technology Cambridge, MA 02319
D.-Z Chen
Affiliation:
Microsystems Technology Laboratories Massachusetts Institute of Technology Cambridge, MA 02319
R. Khanna
Affiliation:
Microsystems Technology Laboratories Massachusetts Institute of Technology Cambridge, MA 02319
R. Braff
Affiliation:
Microsystems Technology Laboratories Massachusetts Institute of Technology Cambridge, MA 02319
H. H. Sawin
Affiliation:
Microsystems Technology Laboratories Massachusetts Institute of Technology Cambridge, MA 02319
M. A. Schmidt
Affiliation:
Microsystems Technology Laboratories Massachusetts Institute of Technology Cambridge, MA 02319
Get access

Abstract

Fluorocarbon films are useful as antistiction films for suspended structure and also for electrical isolation purposes. Furthermore, due to their low dielectric constant and ease of deposition they are useful for VLSI manufacturing applications. Thus, in the interest of building a complete database for these plasma generated fluorocarbon films, we report a designed experiment with a 4-variable matrix to fully characterize deposited films using C4F8 as the feed gas in a high density inductively coupled plasma tool. We also demonstrate the in-situ microfabrication of electrostatic actuators that exhibit the corresponding passivation film for electrical isolation. The utilization of these films as a masking material for MEMS applications and in triple nested mask arrangements is also demonstrated.

Type
Research Article
Copyright
Copyright © Materials Research Society 2000

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1 Man, P. F., Gogoi, B. P. and Mastrangelo, C. H., J-MEMS, 6, 25 (1997).10.1109/84.557527Google Scholar
2 Limb, S. J., Gleason, K. K., Edell, D. J. and Gleason, E. F., J. Vac. Sci. Technol. A 15, 1814 (1997).Google Scholar
3 Jansen, H. V., Gardeniers, J. G. E., Elders, J., Tilmans, H. A. C. and Elwenspoek, M., Sensors and Actuators A, 41–42, 136 (1994).Google Scholar
4Robert Bosch Gmbh, patents 4855017 and 4784720 (USA), and 4241045C1 (Germany).Google Scholar
5 Ayón, A., Lin, C. C., Braff, R., Bayt, R., Sawin, H. H. and Schmidt, M., Journal of the Electrochemical Society, 146, 339 (1999).Google Scholar
6 Karis, T. E., Tyndall, G. W., Fenzel-Alexander, D. and Crowder, M. S., J. Vac. Sci. Technol., 15, 2382 (1997).Google Scholar
7 Limb, S. J., Edell, D. J., Gleason, E. F. and Gleason, K. K., J. Applied Polymer. A 15, 1489 (1997).Google Scholar
8 O'Kane, D. F. and Rice, D. W., J. Macromol. Sci.-Chem., A 10, 567 (1976).10.1080/00222337608061200Google Scholar
9 Amyot, N., Klemberg-Sapieha, J. E., Wertheimer, M. R., Segui, Y. and Moisan, M., IEEE Transactions on Electrical Insulation, 27, 1101 (1992).10.1109/14.204860Google Scholar
10 Savage, C. R. and Timmons, R. B., Chem. Mater., 3, 575 (1991).Google Scholar
11 Baliga, J., Semiconductor International, 20, 139 (1998).Google Scholar
12 Ayón, A., Ishihara, K., Braff, R. A., Sawin, H. H. and Schmidt, M., J. Vac. Sci. Technol. B 17, 1589 (1999).10.1116/1.590794Google Scholar