Hostname: page-component-745bb68f8f-b6zl4 Total loading time: 0 Render date: 2025-01-26T19:07:15.803Z Has data issue: false hasContentIssue false

Nonlinearity Found in Thermoelectric Devices Made of Heterogeneous Semiconductor Nanowire Networks

Published online by Cambridge University Press:  25 June 2015

Kate J. Norris
Affiliation:
Baskin School of Engineering, University of California Santa Cruz, Santa Cruz, CA 95064 U.S.A Nanostructured Energy Conversion Technology and Research (NECTAR), Advanced Studies Laboratories, Univ. of California Santa Cruz – NASA Ames Research Center, Moffett Field, CA 94035
Matthew P. Garrett
Affiliation:
Baskin School of Engineering, University of California Santa Cruz, Santa Cruz, CA 95064 U.S.A Nanostructured Energy Conversion Technology and Research (NECTAR), Advanced Studies Laboratories, Univ. of California Santa Cruz – NASA Ames Research Center, Moffett Field, CA 94035
Junce Zhang
Affiliation:
Baskin School of Engineering, University of California Santa Cruz, Santa Cruz, CA 95064 U.S.A Nanostructured Energy Conversion Technology and Research (NECTAR), Advanced Studies Laboratories, Univ. of California Santa Cruz – NASA Ames Research Center, Moffett Field, CA 94035
Elane Coleman
Affiliation:
Structured Materials Industries, Inc., Piscataway, NJ, United States.
Gary S. Tompa
Affiliation:
Structured Materials Industries, Inc., Piscataway, NJ, United States.
Nobuhiko P. Kobayashi
Affiliation:
Baskin School of Engineering, University of California Santa Cruz, Santa Cruz, CA 95064 U.S.A Nanostructured Energy Conversion Technology and Research (NECTAR), Advanced Studies Laboratories, Univ. of California Santa Cruz – NASA Ames Research Center, Moffett Field, CA 94035
Get access

Abstract

We present a concept to increase efficiencies utilizing nonlinear elements integrated with our semiconductor nanowire networks. Demonstrated here is power generation with thermoelectric devices made of two nanowire networks, one silicon and one indium phosphide, grown on a mechanically flexible copper substrate. Electron microscopy was utilized to characterize structural integrity of the nanowire networks. Non-linear current-voltage characteristics were observed, which suggests a new platform to increase maximum electrical power generation for a given temperature gradient.

Type
Articles
Copyright
Copyright © Materials Research Society 2015 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

DiSalvo, F. J. Science (80-. ). 1999, 285, 703706.CrossRefGoogle Scholar
Zide, J. M. O.; Lu, H.; Onishi, T.; Schroeder, J. L.; Bowers, J. E.; Kobayashi, N. P.; Sands, T. D.; Gossard, A. C.; Shakouri, A. 2010; Vol. 7683, p. 76830V76830V – 9.Google Scholar
Stein, S. S.; Savelli, G.; Faucherand, P.; Montes, L. Nanotechnol. (IEEE-NANO), 2014 IEEE 14th Int. Conf. 2014, 6469.CrossRefGoogle Scholar
Li, D.; Wu, Y.; Kim, P.; Shi, L.; Yang, P.; Majumdar, A. Appl. Phys. Lett. 2003, 83.Google Scholar
Hochbaum, A. I.; Chen, R.; Delgado, R. D.; Liang, W.; Garnett, E. C.; Najarian, M.; Majumdar, A.; Yang, P. Nature 2008, 451, 163167.CrossRefGoogle Scholar
Boukai, A. I.; Bunimovich, Y.; Tahir-Kheli, J.; Yu, J.-K.; Goddard, W. a; Heath, J. R. Nature 2008, 451, 168171.CrossRefGoogle Scholar
Lohn, A. J.; Kobayashi, N. P. Appl. Phys. A 2012, 107, 647651.CrossRefGoogle Scholar
Loutfy, R. O.; Sharp, J. H. J. Chem. Phys. 1979, 71, 1211.CrossRefGoogle Scholar
Léonard, F. Phys. Rev. B - Condens. Matter Mater. Phys. 2012, 86, 15.CrossRefGoogle Scholar
Gossard, a. C., Brown, W, A. C. L. W. W. J. Vac. Sci. Technol. 1982, 20, 694.CrossRefGoogle Scholar
Norris, K. J.; Zhang, J.; Fryauf, D. M.; Gibson, G. A.; Barcelo, S. J.; Kobayashi, N. P. J. Cryst. Growth 2014, 386, 107112.CrossRefGoogle Scholar
Norris, K. J.; Garrett, M.; Coleman, E.; Tompa, G. S.; Zhang, J.; Kobayashi, N. P. J. Cryst. Growth 2014, 406, 4147.CrossRefGoogle Scholar
Yang, R.; Yang, R.; Chen, G.; Chen, G.; Dresselhaus, M. S.; Dresselhaus, M. S. Nano Lett 2005, 5, 11111115.CrossRefGoogle Scholar
Hu, M.; Giapis, K. P.; Goicochea, J. V.; Zhang, X.; Poulikakos, D. Nano Lett. 2011, 11, 618623.CrossRefGoogle Scholar