Hostname: page-component-745bb68f8f-b6zl4 Total loading time: 0 Render date: 2025-01-12T12:56:57.551Z Has data issue: false hasContentIssue false

Nonlinear Optical Microscopy for Imaging Patterned Self-Assembled Monolayers

Published online by Cambridge University Press:  15 February 2011

L. Smilowitz
Affiliation:
Chemical Science and Technology Division Los Alamos National Laboratory, Los Alamos, NM 87545
Q.X. Jia
Affiliation:
Matenrals Science and Technology Division Los Alamos National Laboratory, Los Alamos, NM 87545
X. Yang
Affiliation:
Chemical Science and Technology Division Los Alamos National Laboratory, Los Alamos, NM 87545
D.Q. Li
Affiliation:
Chemical Science and Technology Division Los Alamos National Laboratory, Los Alamos, NM 87545
D. McBranch
Affiliation:
Chemical Science and Technology Division Los Alamos National Laboratory, Los Alamos, NM 87545
J.M. Robinson
Affiliation:
Chemical Science and Technology Division Los Alamos National Laboratory, Los Alamos, NM 87545
Get access

Abstract

We have used the inherent surface sensitivity of second harmonic generation (SHG) to develop an instrument for nonlinear optical (NLO) microscopy of surfaces and interfaces. This optical technique is ideal for imaging nanometer thick self-assembled monolayers (SAM's) which have been patterned using photolithographic techniques. In this paper we demonstrate the application of SHG microscopy to patterned SAM's of the noncentrosymmetric molecule calixarene and discuss other potential applications for this new technique.

Type
Research Article
Copyright
Copyright © Materials Research Society 1997

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Richmond, G. L., Robinson, J. M., and Shannon, V. L.. Progress in Surface Science 28, 170 (1988).Google Scholar
2. Shen, Y. R., Surface Science 299/300. 551562 (1994).Google Scholar
3. Schultz, K. A., Suni, I. I.. and Seebauer, E. G.. J. Opt. Soc. Am. B10, 546 (1993).Google Scholar
4. Shen., Y. R. The Principles of Nonlinear Optics, John Wiley and Sons, New York, 1984.Google Scholar
5. Bloembergen, N. and Pershan, P. S.. Phys. Rev. 128, 606 (1962).Google Scholar
6. Shen, Y. R., Annu. Rev. Phys. Chem. 40, 327 (1989).Google Scholar
7. Heinz, T. F. and Reider, G. A.. Trends in Analytical Chemistry 8, (1989).Google Scholar
8. Smilowitz., L. Jia., Q. X. Yang., X.. Li., D. Q. McBranch., D. and Robinson, J. M., J. Appl. Phys. in press (1997).Google Scholar
9. Prasad, P. N. and Williams., D. I. Introduction to Nonlinear Optical Effects in Molecules and Polymers, John Wiley & Sons. New York. 1991.Google Scholar
10. Jia, Q. McBranch, D.. Swanson., B. and Li., D.Q. Ang. Chem. (1994).Google Scholar
11. Smilowitz., L. McBranch., D. and Robinson, J. M., Syn. Met. in press (1996).Google Scholar