Published online by Cambridge University Press: 15 February 2011
We have developed a two-dimensional numerical model of excimer-laser melting and solidification that properly takes into account the non-equilibrium and transient nature of the process. The model incorporates a novel explicit finite difference scheme for efficiently solving the heat conduction equation and an algorithm that incorporates the interface response function for properly simulating the evolution of phase domains. The model provides space- and time-resolved information regarding the thermal profile and phase domains from which nearly all of the important solidification details can be extracted (e.g., interface location, solidification velocity, interfacial undercooling, etc.). For the simple partial-melting-and-vertical-regrowth scenario, results from the model converge with the results from the well-established one-dimensional model. As a result of its two-dimensional and non-equilibrium formulation, which also respects the amorphous and inert nature of the underlying oxide surface, the model is unique in its capability for properly simulating those solidification scenarios that involve extensive lateral growth of solids, as for example those behind the super-lateral growth phenomenon and various artificially controlled super-lateral growth processes.
To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Find out more about the Kindle Personal Document Service.
To save this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Dropbox account. Find out more about saving content to Dropbox.
To save this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Google Drive account. Find out more about saving content to Google Drive.