Hostname: page-component-745bb68f8f-g4j75 Total loading time: 0 Render date: 2025-01-26T00:47:37.508Z Has data issue: false hasContentIssue false

A New Perspective on an Old Problem: The Staebler-Wronski Effect

Published online by Cambridge University Press:  01 February 2011

Hellmut Fritzsche*
Affiliation:
hellmutf@aol.com, University of Cicago, Physics, Tucson, Arizona, United States
Get access

Abstract

Photo-induced structural changes and defect creation are common phenomena in a large variety of polymeric and non-crystalline semiconductors. The photo-induced degradation of a-Si:H and its alloys, discovered by Staebler and Wronski in 1977, belongs to a special category with quite unique features, which so far has resisted an explanation. Part of the problem is that the near 4-fold coordinated network does not naturally form an amorphous material. It is over-constrained and forms a stress relief void structure. While reviewing the experimental evidence it will be argued that some of our commonly held views regarding the underlying mechanisms of the Staebler-Wronski effect (SWE) may have to be abandoned. First, the internal void surfaces seem to be the principal locations of the photo-structural changes. Second, non-radiative bimolecular recombinations of photo carriers do not seem to be the driving force of defect creation at helium temperatures. Alternative pathways for the photo-induced processes will be suggested.

Type
Research Article
Copyright
Copyright © Materials Research Society 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1 Staebler, D. L. and Wronski, C. R., Appl. Phys. Lett. 31, 292 (1977).Google Scholar
2 Fritzsche, H., Ann. Rev. Mater. Res. 31, 47 (2002).Google Scholar
3 Stradins, P., Sol. Energy Mater. Sol. Cells 78, 347 (2003).Google Scholar
4 Guha, S., Yang, J., Jones, S. J., Chen, Yan, and Williamson, D. L., Appl. Phys. Lett. 61, 1444 (1992).Google Scholar
5 Matsuda, A., Takai, M., Nishimoto, T., and Kondo, M., Sol. Energy Mater. Sol. Cells 78, 3 (2003).Google Scholar
6 Guha, S., Yang, J., Banerjee, A., Yan, B., and Lord, K., Sol. Energy Mater. Sol. Cells 78, 329 (2003).Google Scholar
7 Street, R. A., Hydrogenated amorphous silicon, (Cambridge University Press, 1991).Google Scholar
8 Gleason, K. K., Petrich, M. A., and Reimer, J. A., Phys. Rev. B36, 3259 (1987).Google Scholar
9 Su, T., Taylor, P. C., Chen, S., Crandall, R. S., and Mahan, A. H., J. Non-Cryst. Solids 266–69, 195 (2000).Google Scholar
10 Bauer, S., Schroeder, B., and Oechsner, H., J. Non-Cryst. Solids 227–230, 34 (1998).Google Scholar
11 Kroll, U., Meier, J., Shah, A., Makhailov, S., and Weber, J., J. Appl. Phys. 80, 4971 (1996).Google Scholar
12 Spanakis, E., Ph.D. thesis, Univ. of Crete (2001).Google Scholar
13 Tzanetakis, P., Sol. Energy Mater. Sol. Cells 78, 369 (2003).Google Scholar
14 Vanecek, M., Fric, J., Poruba, A., Mahan, A. H., and Crandall, R. S., J. Non-Cryst. Solids 198–200, 478 (1996).Google Scholar
15 Tsu, D. V., Chao, B. S., Ovshinsky, S. R., Yang, J., and Guha, S., Appl. Phys Lett. 71, 1317 (1997).Google Scholar
16 Tsu, D. V., Chao, B. S., and Jones, S. J., Sol. Energy Mater. Sol. Cells 78, 115 (2003).Google Scholar
17 Beyer, W., Sol. Energy Mater. Sol. Cells 78, 235 (2003); phys. stat. solidi (c) 1, 1144 (2004).Google Scholar
18 Collins, R. W., Ferlauto, A. S., Ferreira, G. M., Chen, Chi, Koh, Joohyun, Koval, R. J., Lee, Yeeheng, Pearce, J. M., and Wronski, C. R., Sol. Energy Mater. Sol. Cells 78, 143 (2003).Google Scholar
19 Williamson, D. L., Sol. Energy Mater. Sol. Cells 78, 41 (2003).Google Scholar
20 Williamson, D. L., Mater. Res. Soc. Symp. Proc. 377, 251 (1995).Google Scholar
21 Guha, S., Yang, J., Jones, S. J., Chen, Yan, and Williamson, D. L., Appl. Phys. Lett. 61, 1444 (1992).Google Scholar
22 Su, T. and Taylor, P. C., Sol. Energy Mater. Sol. Cells 78, 269 (2003).Google Scholar
23 Fehr, M., Schnegg, A., Teutloff, C., Bittl, R., Astakhov, O., Finger, F., Rech, B., and Lips, K., phys. stat. solidi (a) 207, 552 (2010).Google Scholar
24 Yamasaki, S., Umeda, T., Isoya, J., Zhou, J. H., and Tanaka, K, J. Non-Cryst. Solids 227–230, 332, 353 (1998).Google Scholar
25 Umeda, T., Yamasaki, S., Isoya, J., and Tanaka, K., Phys. Rev. B62, 15702 (2000).Google Scholar
26 Zhang, S. B. and Branz, H. M., Phys. Rev. Lett. 87, 105503 (2001).Google Scholar
27 Yan, B., Yang, J., Lord, K. and Guha, S., Mater. Res. Soc. Symp. Proc. 664, A25.2.1 (2001).Google Scholar
28 Stradins, P., private communication, to be published.Google Scholar
29 Stradins, P., Fritzsche, H., and Tran, M. Q., Mater. Res. Soc. Symp. Proc. 336, 227 (1994).Google Scholar
30 Stradins, P. and Fritzsche, H., J. Non- Cryst. Solids 200, 432 (1996).Google Scholar
31 Stutzmann, M., Jackson, W. B., and Tsai, C. C., Phys. Rev. B32, 23 (1985).Google Scholar
32 Carlson, D. E. and Rajan, K., J. Appl. Phys. 83, 1726 (1998).Google Scholar
33 Drabold, D. A., Eur. Phys. J. B68, 1 (2009).Google Scholar
34 Kong, G., Zhang, D., Yue, G., Wang, Y., and Liao, X., Mater. Res. Soc. Symp. Proc. 507, 697 (1998).Google Scholar
35 Yelon, A., Rocheford, A., Sheng, S., and Sacher, E., Sol. Energy Mater. Sol. Cells 78, 391 (2003).Google Scholar
36 Hamed, A. and Fritzsche, H., J. Non-Cryst. Solids 114, 717 (1989).Google Scholar
37 Hata, N. and Matsuda, A., J. Non-Cryst. Solids 164–166, 187 (1993).Google Scholar
38 Fritzsche, H., Phil. Mag. B68, 561 (1993).Google Scholar
39 Wagner, L. K. and Grossman, J. C., Phys. Rev. Lett. 101, 265501 (2008).Google Scholar
40 Tzanetakis, P., Kopidakis, N., Androulidaki, M., Kalpouzos, C., Stradins, P. and Fritzsche, H., J. Non-Cryst. Solids 198–200, 458 (1996).Google Scholar
41 Bobela, D. C., Branz, H., Stradins, P., Yan, B., and Xu, X., Mater. Res. Soc. Symp. Proc. 1245, A14.4 (2010).Google Scholar
42 Branz, H., Phys. Rev. B59, 5498 (1999).Google Scholar