Published online by Cambridge University Press: 31 January 2011
An overview is given of new ferromagnetic Heusler alloys like Ni-Co-(Al, Ga, Zn), Co-Ni-(Al, Ga, Zn), Fe-Ni-(Al, Ga, Zn) and Fe-Co-(Al, Ga, Zn), which are compared with today's mostly investigated systems such as Ni-Mn-Z (Z = Al, Ga, In, Sn, Sb). The investigations are based on first-principles as well as Monte Carlo calculations. For some new systems, the simulations of atomic structure and magnetic and electronic properties allow to predict higher Curie and martensitic transformation temperatures than those of prototypical Ni-Mn-Z materials. Some of the new materials may be distinguished for devices which exploit the magnetic shape memory effect. Interestingly, in general, all off-stoichiometric alloys display competing antiferromagnetic correlations, which may be important for devices using the magnetocaloric effect. The Curie temperatures are obtained from Monte Carlo simulations using magnetic exchange parameters from ab initio calculations while the structural instability is inferred from local minima in the ab initio total energy curves as a function of the tetragonal distortion. The manifestation of phonon softening as a precursor of structural transformations is present in the austenitic phase of most of the calculated ferromagnetic shape-memory alloys. However, quite remarkably, we find that phonon softening is absent in a few systems such as Co2NiGa.
To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Find out more about the Kindle Personal Document Service.
To save this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Dropbox account. Find out more about saving content to Dropbox.
To save this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Google Drive account. Find out more about saving content to Google Drive.