Hostname: page-component-745bb68f8f-v2bm5 Total loading time: 0 Render date: 2025-02-06T04:10:09.490Z Has data issue: false hasContentIssue false

Multifunctional Optical In Situ Monitoring of Semiconductor Film Growth

Published online by Cambridge University Press:  10 February 2011

K. A. Bertness
Affiliation:
National Institute of Standards and Technology, Optoelectronics Division, Mailstop 815.04, 325 Broadway, Boulder, CO 80303, bertness@boulder.nist.gov
S. P. Hays
Affiliation:
National Institute of Standards and Technology, Optoelectronics Division, Mailstop 815.04, 325 Broadway, Boulder, CO 80303
R. K. Hickernell
Affiliation:
National Institute of Standards and Technology, Optoelectronics Division, Mailstop 815.04, 325 Broadway, Boulder, CO 80303
Get access

Abstract

We have modified a normal-incidence optical reflectance spectroscopy system to allow rapid switching between the measurement of sample reflectance and sample emission. The resulting optical system is capable of “smart” pyrometry, in which sample emissivity is measured rather than assumed. The emissivity measurement makes use of the principle of detailed balance, which states that for specular, opaque samples, the sum of the emissivity and reflectance at each wavelength is equal to 1. We present data based on multilayer III-V semiconductor structures grown by molecular beam epitaxy, but the optical system would function equally well in any growth or deposition system with optical access to the substrate. The “smart” pyrometry temperatures we measure typically differs from conventional pyrometry by 5 to 10°C, and occasionally as much as 20°C, for multilayer structures of AIGaAs and GaAs. We present details of the optical components and arrangement that minimize the effect of sample wobble and allow the system operator regular visual access to the sample. Calibration techniques for the combined system are also discussed.

Type
Research Article
Copyright
Copyright © Materials Research Society 1999

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Houng, Y. M., Tan, M. R. T., Liang, B. W., Wang, S. Y. and Mars, D. E., “In situ thickness monitoring and control for highly reproducible growth of distributed Bragg reflectors,” J. Vac. Sci. Technol. B 12, 1221-4 (1994).Google Scholar
2. Sacks, R. N., Sieg, R. M. and Ringel, S. A., “Investigation of the accuracy of pyrometric interferometry in determining AlxGa(l-x)As growth rates and compositions,” J. Vac. Sci. Technol. B 14, 2157–62 (1996).Google Scholar
3. Knopp, K. J., Ketterl, J. R., Christensen, D. H., Pearsall, T. P. and Hill, J. R., “Simultaneous monitoring of wafer- and environment-states during molecular beam epitaxy,” Mat. Res. Soc. Synup. Proc. (MRS, Pittsburgh, 1996), vol. 441, pp. 761.Google Scholar
4. Klem, J. F., Breiland, W. G., Fritz, I. J., Drummond, T. J. and Lee, S. R., “Application of in-situ reflectance monitoring to molecular beam epitaxy of vertical-cavity structures,” J. Vac. Sci. Technol. B 16, 1498–501 (1998).Google Scholar
5. Breiland, W. G. and Killeen, K. P., “A virtual interface method for extracting growth rates and high temperature optical constants from thin semiconductor films using in situ normal incidence reflectance,” J. Appl. Phys. 78, 6726–36 (1995)Google Scholar
6. Aspnes, D. E., Bhat, R., Caneau, C., Colas, E., Florez, L. T., Gregory, S., Harbison, J. P., Kamiya, I., Keramidas, V. G., Koza, M. A., Pudensi, M.A. A., Quinn, W. E., Schwarz, S. A., Tamargo, M. C. and Tanaka, H., “Optically monitoring and controlling epitaxial growth,” J. Cryst. Growth 120, 71–7 (1992)Google Scholar
7. Armstrong, J. V., Farrell, T., Joyce, T. B., Kightley, P., Bullough, T. J. and Goodhew, P. J., “Monitoring real-time CBE growth of GaAs and AIGaAs using dynamic optical reflectivity,” J. Cryst. Growth 120, 84–7 (1992)Google Scholar
8. Jackson, A. W., Pinsukanjana, P. R., Gossard, A. C. and Coldren, L. A., “In situ monitoring and control for MBE growth of optoelectronic devices,” IEEE J. Sel. Topics Quantum Electron. 3, 836–44 (1997)Google Scholar
9. Lum, R. M., McDonald, M. L., Bean, J. C., Vandenberg, J., Pernell, T. L., Chu, S.N. G., Robertson, A. and Karp, A., “In situ reflectance monitoring of InP/InGaAsP films grown by metalorganic vapor phase epitaxy,” Appl. Phys. Lett. 69, 928–30 (1996)Google Scholar
10. Bertness, K. A., Hickernell, R. K., Hays, S. P. and Christensen, D. H., “Noise reduction in optical in situ measurements for molecular beam epitaxy by substrate wobble normalization,” J. Vac. Sci. Technol. B 16, 1492–7 (1998)Google Scholar
11. Böbel, F. G., Möller, H., Wowchak, A., Hertl, B., Hove, J. Van, Chow, L. A. and Chow, P. P., “Pyrometric interferometry for real time molecular beam epitaxy process monitoring,” J. Vac. Sci. Technol. B 12, 1207–10 (1994)Google Scholar
12. Kosonocky, W. F., Kaplinsky, M. B., McCaffrey, N. J., Hou, E. S., Manikopoulas, C. N., Ravindra, N. M., Belikov, S., Li, J. and Patel, V., “Multi-wavelength imaging pyrometer,” SPIE Conf. Proc. vol. 2225, pp. 2643.Google Scholar
13. Reif, F., Fundamentals of Statistical and Thermal (McGraw-Hill Book Co., New York, 1965), p. 382 ff.Google Scholar
14. Kuo, C. H., Anand, S., Droopad, R., Choi, K. Y. and Maracas, G. N., “Measurement of GaAs temperature-dependent optical constants by spectroscopic ellipsometry,” J. Vac. Sci. Technol. B 12, 1214–6 (1994)Google Scholar