Hostname: page-component-745bb68f8f-b6zl4 Total loading time: 0 Render date: 2025-01-26T12:44:06.061Z Has data issue: false hasContentIssue false

Mound Formation and Coarsening in Homoepitaxial Growth

Published online by Cambridge University Press:  15 February 2011

Jacques G. Amar
Affiliation:
Department of Physics, Emory University, Atlanta GA 30322
Fereydoon Family
Affiliation:
Department of Physics, Emory University, Atlanta GA 30322
Get access

Abstract

The effects of instabilities which lead to mound formation and coarsening in homoepitaxial growth on metal (100) surfaces are discussed. These include an instability due to the Ehrlich-Schwoebel step barrier to interlayer diffusion as well as an instability due to step-adatom attraction at ascending steps. A unified picture of the effects of attractive and repulsive interactions at ascending and descending steps on surface morphology and island nucleation is presented. An analytic calculation of the selected mound angle and critical temperature for mound formation as a function of both the Ehrlich-Schwoebel step barrier and the barrier to diffusion towards an ascending step is also presented. Depending on the sign of the step barrier and the magnitude of the prefactor for diffusion over a step various scenarios are possible, including the existence of a critical temperature for mound formation above which (for a positive step barrier) or below which (for a negative step barrier) quasi-layer-by-layer growth will be observed. A theoretical analysis also leads to an accurate prediction of the observed mound angle for Fe/Fe(100) deposition at room temperature. The general dependence of the mound angle, surface skewness, and mound coarsening exponent on temperature, deposition rate, and strength of the step barrier is also studied via kinetic Monte Carlo simulations of bcc(100) growth and compared with recent experiments.

Type
Research Article
Copyright
Copyright © Materials Research Society 1997

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. See for example, Tsao, J.Y., Maierials fundamenials of molecular beam epitaxy (World- Scientific, Singapore, 1993).Google Scholar
2. Ehrlich, G. and Hudda, F., J. Chem. Phys. 44, 1039 (1966); R.L. Schwoebel, J. Appl. Phys. 40, 614 (1969).Google Scholar
3. Rosenfeld, G., Servanty, R., Teichert, Ch., Poelsema, B., and Comsa, G., Phys. Rev. Lett. 71, 895 (1993).Google Scholar
4. Bromann, K., Brune, H., Roder, H., and Kern, K., Phys. Rev. Lett. 75, 677 (1995).Google Scholar
5. Johnson, M.D., Orme, C., Hunt, A.W., Graff, D., Sudijono, J., Sander, L.M., and Orr, B.G., Phys. Rev. Lett. 72 116 (1994).Google Scholar
6. Smith, G.W., Pidduck, A.J., Whitehouse, C.R., Glasper, J.L., and Spowart, J., J. Cryst. Growth, 127, 966 (1993).Google Scholar
7. Ernst, H.-J., Fabre, F., Folkerts, R., and Lapujoulade, J., Phys. Rev. Lett. 72, 112 (1994).Google Scholar
8. Stroscio, J.A., Pierce, D.T., Stiles, M., Zangwill, A., and Sander, L.M., Phys. Rev. Lett. 75, 4246 (1995)Google Scholar
9. Thuirmer, K., Koch, R., Weber, M., and Rieder, K.H., Phys. Rev. Lett. 75, 1767 (1995).Google Scholar
10. Nostrand, J.E. Van, Chey, S. Jay, Hasan, M.-A., Cahill, D.G., and Greene, J.E., Phys. Rev. Lett. 74, 1127 (1995).Google Scholar
11. Tsui, F., Wellman, J., Uher, C., and Clarke, R., Phys. Rev. Lett. 76, 3164 (1996).Google Scholar
12. Elliott, W.C., Miceli, P.F., Tse, T., and Stephens, P.W. (to be published). 239Google Scholar
13. Villain, J., J. Phys. I (France) 1, 19 (1991).Google Scholar
14. Tersoff, J., Denier van der Gon, A.W., and Tromp, R.M., Phys. Rev. Lett. 72, 266 (1994).Google Scholar
15. Krug, J., Plischke, M., and Siegert, M. Phys. Rev. Lett. 70, 3271 (1993).Google Scholar
16. Siegert, M. and Plischke, M., Phys. Rev. Lett. 73, 1517 (1994).Google Scholar
17. Family, F. and Amar, J.G., in Evolution of Epitaxial Structure and Morphology, p. 67, Clarke, R. et al eds., MRS Proceedings Vol.399, Boston, 1996; J.G. Amar and F. Family, Evolution of Epitaxial Structure and Morphology, p. 95.Google Scholar
18. Amar, J.G. and Family, F, Phys. Rev. B 54, 14742 (1996); Surf. Sci. 365, 177 (1996).Google Scholar
19. Amar, J.G. and Family, F., Phys. Rev. B 54, 14071 (1996).Google Scholar
20. Bartelt, M.C. and Evans, J.W., in Evolution of Epitaxial Structure and Morphology, Clarke, R. et al eds., MRS Proceedings Vol.399, Boston, 1996.Google Scholar
21. Amar, J.G. and Family, F., Phys. Rev. Lett. 77, 4584 (1996).Google Scholar
22. Wang, S.C. and Ehrlich, G., Phys. Rev. Lett. 70, 41 (1993).Google Scholar
23. Evans, J.W., Sanders, D.E., Thiel, P. A., and DePristo, A.E., Phys. Rev. B 41, 5410 (1990); H.C. Kang and J.W. Evans, Surface Science 271, 321 (1992).Google Scholar
24. Stroscio, J.A., Pierce, D.T., and Dragoset, R.A., Phys. Rev. Lett. 70, 3615 (1993), J.A. Stroscio and D. T Pierce, Phys. Rev. B 49, 8522 (1994).Google Scholar
25. He, Y.L., Yang, H.N., Lu, T.M., and Wang, G.C., Phys. Rev. Lett. 69, 3770 (1992).Google Scholar
26. Bartelt, M.C. and Evans, J.W., Phys. Rev. Lett. 75, 4250 (1995).Google Scholar
27. Smilauer, P. and Vvedensky, D.D., Phys. Rev. B 52, 14263 (1995).Google Scholar
28. Siegert, M. and Plischke, M., Phys. Rev. E 53, 307 (1996).Google Scholar
29. Amar, J.G. and Family, F., (unpublished).Google Scholar