Hostname: page-component-745bb68f8f-b95js Total loading time: 0 Render date: 2025-01-12T09:52:35.291Z Has data issue: false hasContentIssue false

Modified Polyaniline Nanofibres for Ascorbic Acid Detection

Published online by Cambridge University Press:  28 March 2011

Larisa Florea
Affiliation:
CLARITY: The Centre for Sensor Web Technologies, Dublin City University, Dublin 9, Ireland.
Emer Lahiff
Affiliation:
CLARITY: The Centre for Sensor Web Technologies, Dublin City University, Dublin 9, Ireland.
Dermot Diamond
Affiliation:
CLARITY: The Centre for Sensor Web Technologies, Dublin City University, Dublin 9, Ireland.
Get access

Abstract

Polyaniline nanofibres (PAni) can be surface modified to improve electroactivity over a broader pH range. The technique we describe here can be used to attach carboxylic acid terminated substituents. Modified nanofibres maintain their high surface area, and ability to switch between different redox states. These properties make the material suitable for sensing applications. Unlike unmodified PAni, the functionalised material is self-doping and hence more stable in higher pH solutions. Here we demonstrate how modified PAni fibres can be used for the detection of ascorbic acid.

Type
Research Article
Copyright
Copyright © Materials Research Society 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Lau, O. W., Luk, S. F. and Wong, K. S., Analyst 112(7), 10231025 (1987).Google Scholar
2. Moll, N. and Joly, J. P., Journal of Chromatography 405, 347356 (1987).Google Scholar
3. Huang, H. P., Cai, R. X., Du, Y. M. and Zeng, Y. N., Anal. Chim. Acta 309(1-3), 271275 (1995).Google Scholar
4. Matsumoto, K., Baeza, J. J. B. and Mottola, H. A., Anal. Chem. 65(13), 16581661 (1993).Google Scholar
5. Facci, J. and Murray, R. W., Anal. Chem. 54(4), 772777 (1982).Google Scholar
6. Doherty, A. P., Stanley, M. A. and Vos, J. G., Analyst 120(9), 23712376 (1995).Google Scholar
7. Yu, A. M., Sun, D. M., Gu, H. Y. and Chen, H. Y., Analytical Letters 29(15), 26332643 (1996).Google Scholar
8. Kristensen, E. W., Kuhr, W. G. and Wightman, R. M., Anal. Chem. 59(14), 17521757 (1987).Google Scholar
9. Xu, J. J., Zhou, D. M. and Chen, H. Y., Fresenius Journal of Analytical Chemistry 362(2), 234238 (1998).Google Scholar
10. Huang, J. X., Virji, S., Weiller, B. H. and Kaner, R. B., Journal of the American Chemical Society 125(2), 314315 (2003).Google Scholar
11. Virji, S., Kaner, R. B. and Weiller, B. H., Journal of Physical Chemistry B 110(44), 2226622270 (2006).Google Scholar
12. Virji, S., Kaner, R. B. and Weiller, B. H., Chemistry of Materials 17(5), 12561260 (2005).Google Scholar
13. Virji, S., Huang, J. X., Kaner, R. B. and Weiller, B. H., Nano Letters 4(3), 491496 (2004).Google Scholar
14. Virji, S., Fowler, J. D., Baker, C. O., Huang, J. X., Kaner, R. B. and Weiller, B. H., Small 1(6), 624627 (2005).Google Scholar
15. Lahiff, E., Bell, S., Diamond, D., Mater. Res. Soc. Symp. Proc. 1054, 1054-FF1005-1005. (2008).Google Scholar
16. Lahiff, E., Woods, T., Blau, W., Wallace, G. G. and Diamond, D., Synthetic Metals 159(7–8), 741748 (2009).Google Scholar
17. Lahiff, E., Scarmagnani, S., Schazmann, B., Cafolla, A., Diamond, D., International Journal of Nanomanufacturing. 5(1/2), 8899 (2010).Google Scholar
18. Atkinson, S., Chan, H. S. O., Neuendorf, A. J., Ng, S. C., Ong, T. T. and Young, D. J., Chemistry Letters (3), 276277 (2000).Google Scholar