No CrossRef data available.
Published online by Cambridge University Press: 31 January 2011
In this paper an overview is given on recent results obtained in the framework of an Italian/Croatian collaboration aimed to explore the potential of techniques based on focused MeV ion beams to locally modify the structural, electrical and optical features of diamond.
Experiments were carried out using light (H, He, C) ion beams with energies of the order of MeV, focused to micrometer-size spot and raster scanned onto the surface of monocrystalline (IIa or Ib) diamond samples. Different energies, ion species and fluences were used, in conjunction with variable thickness masks and post annealing processes, to define three-dimensional structures in diamond, whose electrical/optical/structural properties have been suitably characterized. Finite element numerical methods have been employed in the modeling of the material modification and in device design.
To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Find out more about the Kindle Personal Document Service.
To save this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Dropbox account. Find out more about saving content to Dropbox.
To save this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Google Drive account. Find out more about saving content to Google Drive.