Hostname: page-component-745bb68f8f-lrblm Total loading time: 0 Render date: 2025-01-26T20:48:16.639Z Has data issue: false hasContentIssue false

A Model for Curvature in Film-Substrate System

Published online by Cambridge University Press:  01 February 2011

G. Vanamu
Affiliation:
Department of Chemical and Nuclear Engineering, University of New Mexico, Albuquerque, NM-87131, U.S.A.
T. A. Khraishi
Affiliation:
Mechanical Engineering Department, University of New Mexico, Albuquerque, NM-87131, U.S.A.
A. K. Datye
Affiliation:
Department of Chemical and Nuclear Engineering, University of New Mexico, Albuquerque, NM-87131, U.S.A.
Get access

Abstract

Growth of lattice mismatched films creates bending in the whole structure. There has been great interest in the study of these curvatures in epitaxially-grown materials. An analytical solution for the radius of curvature produced by stresses developed in growing lattice mismatched materials has been obtained. The analyses were based on beam bending theory and strain partitioning theory introduced by our group earlier. The expressions for radius of curvature were obtained for a two-layer heterostructure. The variation of the radius of curvature with the relative thicknesses, relative lattice constants, and relative elastic constants of the layers was determined. The model was verified by applying it to a symmetric tri-laminate structure. The above model can also be extended to determine the curvature for multi-layered heterostructures.

Type
Research Article
Copyright
Copyright © Materials Research Society 2005

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Mooney, P. M., Jordansweet, J. L., Ismail, K., Chu, J. O., Feenstra, R. M., Legoues, F. K., Appl. Phys. Lett. 67, 2373 (1995).Google Scholar
2. Ismail, K., Arafa, M., Saenger, K. L., Chu, J. O., Meyerson, B. S., Appl. Phys. Lett. 66, 1077 (1995).Google Scholar
3. Fitzgerald, E. A., Xie, Y. H., Monroe, D., Silverman, P. J., Kuo, J. M., Kortan, A. R., Thiel, F. A., Weir, B. E., J. Vac. Sci. Technol. B 10, 1807 (1992).Google Scholar
4. Currie, M. T., Samavedam, S. B., Langdo, T. A., Leitz, C. W., Fitzgerald, E. A., Appl. Phys. Lett. 72, 1718 (1998)Google Scholar
5. Scarinci, F., Fiordelisi, M., Calarco, R., Lagomarsino, S., Colace, L., Masini, G., Barucca, G., Coffa, S., Spinella, S., J. Vac. Sci. Technol. B 16, 1754 (1998).Google Scholar
6. Schaffler, F., Mater. Res. Soc. Symp. Proc. 220, 433 (1991).Google Scholar
7. Ismail, K., Meyerson, B. S., Wang, P. J., Appl. Phys. Lett. 58, 2117 (1991).Google Scholar
8. Mii, Y. J., Xie, Y. H., Fitzgerald, E. A., Monroe, D., Thiel, F. A., Weir, B. E., Feldman, L. C., Appl. Phys. Lett. 59, 1611 (1991).Google Scholar
9. Jain, S. C., Hayes, W., Semicond. Sci. Technol. 6, 547 (1991).Google Scholar
10. Powell, A. R., Kubiak, R. A., Whall, T. E., Parker, E. H. C., Bowen, D. K., Mater. Res. Soc. Symp. Proc. 220, 277 (1991).Google Scholar
11. Elmasry, N. A., Hussien, S. A., Fahmy, A. A., Karam, N. H., Bedair, S. M., Materials letters, 14, 58 (1992).Google Scholar
12. Saul, R. H., J. Appl. Phys. 40, 3273 (1969).Google Scholar
13. Reinhart, F. K. and Logan, R. A., J. Appl. Phys. 44, 3171 (1973).Google Scholar
14. Olsen, G. H. and Ettenberg, M., J. Appl. Phys. 48, 2543 (1977).Google Scholar
15. Vilms, J. and Kerps, D., J. Appl. Phys. 53, 1536 (1982).Google Scholar
16. Lacheisserie, E. du Tre'molet de and Peuzin, J. C., J. Magn. Magn. Mater. 136, 189 (1994).Google Scholar
17. Marcus, P. M., J. Appl. Phys. 79, 8364 (1996).Google Scholar
18. Zubia, D., Hersee, S. D., Khraishi, T. A., Appl. Phys. Lett. 80, 740 (2002).Google Scholar
19. Gere, J. M. and Timoshenko, S. P., Mechanics of Materials, (PWS-KENT, Boston, 1990), 3rd ed., p. 254.Google Scholar
20. Hirth, J. P. and Evans, A.G., J. Appl. Phys. 60, 2372 (1986).Google Scholar
21. Vanamu, G., Robbins, J., Khraishi, T. A., Datye, A. K. and Zaidi, S. H., (Journal of Electronic Materials, in press).Google Scholar