Hostname: page-component-745bb68f8f-s22k5 Total loading time: 0 Render date: 2025-01-12T08:06:04.683Z Has data issue: false hasContentIssue false

A Model Dielectric Function for Graphene from the Infrared to the Ultraviolet

Published online by Cambridge University Press:  12 April 2013

A. Boosalis
Affiliation:
Department of Electrical Engineering, University of Nebraska-Lincoln, Lincoln, NE 68508 National Institute of Standards and Technology, Gaithersburg, MD 20899
R. Elmquist
Affiliation:
National Institute of Standards and Technology, Gaithersburg, MD 20899
M. Real
Affiliation:
National Institute of Standards and Technology, Gaithersburg, MD 20899
N. Nguyen
Affiliation:
National Institute of Standards and Technology, Gaithersburg, MD 20899
M. Schubert
Affiliation:
Department of Electrical Engineering, University of Nebraska-Lincoln, Lincoln, NE 68508
T. Hofmann
Affiliation:
Department of Electrical Engineering, University of Nebraska-Lincoln, Lincoln, NE 68508
Get access

Abstract

A modified critical point model dielectric function for graphene is derived here and used to analyze spectroscopic ellipsometry data obtained over a wide spectral range from 3 to 9 eV. Critical point and exciton resonance energies are extracted and discussed. Our findings indicate that epitaxial graphene on SiC to exhibits equivalent exciton behavior to that of suspended graphene. We further apply our model dielectric function to evaluate dielectric function data for highly oriented pyrolytic graphite reported in the literature. Excellent agreement is found between the critical point model developed here and the literature data even for the low energy spectral range up to 1 eV.

Type
Articles
Copyright
Copyright © Materials Research Society 2013

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Novoselov, K. S. et al. ., Science 306, 666 (2004).CrossRefGoogle Scholar
Sun, Z. et al. ., ACS Nano 4, 803 (2010).CrossRefGoogle Scholar
Bae, S. et al. ., Nature Nanotechnology 5, 574 (2010).CrossRefGoogle Scholar
De Arco, L., et al. ., ACS Nano 4, 2865 (2010).CrossRefGoogle Scholar
Wu, J. et al. ., ACS Nano 4, 43 (2010).CrossRefGoogle Scholar
Nair, R. et al. ., Science 320, 1308 (2008).CrossRefGoogle Scholar
Mak, K. F. et al. ., Phys. Rev. Lett. 101, 196405 (2008).CrossRefGoogle Scholar
Kravets, V. G. et al. ., Phys. Rev. B 81, 155413 (2010).CrossRefGoogle Scholar
Weber, J. et al. ., Phys. Rev. B 97, 091904 (2010).Google Scholar
Nelson, F. et al. ., Appl. Phys. Lett. 97, 253110 (2010).CrossRefGoogle Scholar
Chae, D. H. et al. ., Nano Lett. 11, 1379 (2011).CrossRefGoogle Scholar
Hofmann, T. et al. ., Appl. Phys. Lett. 98, 041906 (2011).CrossRefGoogle Scholar
Boosalis, A. et al. ., Appl. Phys. Lett. 101, 011912 (2012).CrossRefGoogle Scholar
Fujiwara, H., Spectroscopic Ellipsometry: Principles and Applications, 1 st ed. (Maruzen, Tokyo, 2003) p. 226.Google Scholar
Jellison, G. E., Thin Solid Films 313314, 33 (1998).CrossRefGoogle Scholar
Mak, K. F. et al. ., Phys. Rev. Lett. 106, 046401 (2011).CrossRefGoogle Scholar
Yu, P. and Cardona, M., Fundamentals of Semiconductors, 4 th ed. (Springer, Heidelberg, 2010) p. 261.CrossRefGoogle Scholar
Adachi, S., Phys. Rev. B 38, 17 (1988).Google Scholar
Stauber, T. et al. ., Phys. Rev. B 78, 085432 (2008).CrossRefGoogle Scholar
Fano, U., Phys. Rev. 124, 6 (1961).CrossRefGoogle Scholar
Jellison, G. E. et al. ., Phys. Rev. B 76, 085125 (2007).CrossRefGoogle Scholar