Published online by Cambridge University Press: 10 February 2011
SrS:Ce is an important material for full color electroluminescent (EL) flat panel displays. Using a combination of SrS:Ce/ZnS:Mn and appropriate color filters high quality full color displays have been demonstrated [1]. Major issues for commercially viable process integration of SrS:Ce are the combination of high luminance, high growth rate, and process temperatures below 600°C for compatibility with low cost glass substrates. This work describes the process development and optimization of metal-organic chemical vapor deposition (MOCVD) of SrS:Ce. MOCVD is a promising candidate for deposition of SrS:Ce because it can provide the required growth rates and allows control of crystal structure and stoichiometry. Growth of SrS:Ce was performed in the temperature range from 400°C to 530°C using Sr(tmhd)2, Ce(tmhd)4, and H2S as precursors. The structure of the SrS:Ce was found to be strongly dependent on the H2S flow. A brightness of 15 fL and an efficiency of 0.22 lm/W has been achieved (40 V above threshold voltage, 60 Hz AC). Film analysis included Rutherford backscattering (RBS), X-ray diffraction (XRD), atomic force microscopy (AFM), and EL measurements. Results on the correlation between process parameters, film structure, grain size and EL performance will be presented.