Published online by Cambridge University Press: 13 May 2015
Bifunctional electrocatalysts, which facilitate the oxygen reduction reaction (ORR) and oxygen evolution reaction (OER), are vital components in advanced metal-air batteries. Results are presented for carbon-free, nanocrystalline, rod-like, Mn-Co oxide/PEDOT bifunctional electrocatalysts, prepared by template-free sequential anodic electrodeposition. Electrochemical characterization of synthesized electrocatalysts, with and without a conducting polymer (PEDOT) coating, was performed using cyclic voltammetry (CV) and linear sweep voltammetry (LSV). In addition, microstructural characterization was conducted using SEM, TEM, STEM and XPS. Mn-Co oxide/PEDOT showed improved ORR/OER performance relative to Mn-Co oxide and PEDOT. On the basis of rotating disk electrode (RDE) experiments, Mn-Co oxide/PEDOT displayed the desired 4-electron transfer oxygen reduction pathway. Comparable ORR activity and superior OER activity relative to commercial Pt/C were observed.
To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Find out more about the Kindle Personal Document Service.
To save this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Dropbox account. Find out more about saving content to Dropbox.
To save this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Google Drive account. Find out more about saving content to Google Drive.