Hostname: page-component-745bb68f8f-v2bm5 Total loading time: 0 Render date: 2025-01-26T17:09:21.252Z Has data issue: false hasContentIssue false

Microtubule Templated Synthesis of Inorganic Nanomaterials

Published online by Cambridge University Press:  17 March 2011

Andrew K. Boal
Affiliation:
Biomolecular Materials and Interfaces, MS1413 Sandia National Laboratory PO Box 5800 Albuquerque, NM 87123, USA
Thomas J. Headley
Affiliation:
Biomolecular Materials and Interfaces, MS1413 Sandia National Laboratory PO Box 5800 Albuquerque, NM 87123, USA
Ralph G. Tissot
Affiliation:
Biomolecular Materials and Interfaces, MS1413 Sandia National Laboratory PO Box 5800 Albuquerque, NM 87123, USA
Bruce C. Bunker
Affiliation:
Biomolecular Materials and Interfaces, MS1413 Sandia National Laboratory PO Box 5800 Albuquerque, NM 87123, USA
Get access

Abstract

Protein microtubules (MTs) have been used as templates for the biomimetic synthesis of metal oxide, metal sulfide, and metallic nanomaterials. These materials were coated onto MTs via three distinct synthetic pathways: metal ion hydrolysis which yielded iron oxide or zinc oxide-coated microtubules, metal ion/sulfide co-precipitation which yielded zinc sulfide coated MTs, and metal ion reduction which yielded gold-coated MTs. The growth process of metal oxide coating involves heterogeneous nucleation on the MT surface and produces even, microcrystalline films. Metal sulfide and metal coating initially involves the formation of nanoparticle arrays that decorate the MT surface and can eventually lead to either semi- or fully continuous coatings.

Type
Research Article
Copyright
Copyright © Materials Research Society 2004

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. (a) Mann, S. Ed. Biomimetic Materials Chemistry, VCH Publishers, New York, 1996. (b) Fendler, J. H. Chem. Mater. 2001, 13, 3196-3210. (c) Davis, S. A.; Breulmann, M.; Rhodes, K. H.; Zhang, B.; Mann, S. Chem. Mater. 2001, 13, 3218-3226. (d) Mann, S. Angew. Chem. Int. Ed. Engl. 2000, 39, 3392-3406. (e) Collier, J. H.; Messersmith, P. B. Ann. Rev. Mater. Res. 2001, 31, 237-263. (f) Estroff, L. A.; Hamilton, A. D. Chem. Mater. 2001, 13, 3227-3235. (g) van Bommel, K. J. C.; Friggeri, A.; Shinkai, S. Angew. Chem. Int. Ed. Engl.2003, 42, 980-999.Google Scholar
2. Howard, J. Mechanics of the Motor Proteins and the Cytoskeleton, Sinauer Associates, Inc.: Sunderland, MA, 2001.Google Scholar
3. Buljan, V.; Yeung, S.; Rushdi, S.; Delikatny, J.; Hambly, B. Biophys. J. 2001, 80, 99A.Google Scholar
4. Boal, A. K.; Rivera, S. B.; Miller, N. E.; Bachand, G. D.; Bunker, B. C. Manuscript in Preparation.Google Scholar
5. Boal, A. K.; Headley, T. J.; Tissot, R. G.; Bunker, B. C. Adv. Funct. Mater. 2004, 14, 1924.CrossRefGoogle Scholar
6. Stracke, R.; Bohm, K. J.; Wollweber, L.; Tuszynski, J. A.; Unger, E. Biochem. Biophys. Res. Com. 2002, 293, 602609.CrossRefGoogle Scholar
7. For examples of the use of MTs as platforms for the fabrication of nanoparticle arrays and Ni metalization, see: (a) Kirsch, R.; Mertig, M.; Pompe, W.; Wahl, R.; Sadowski, G.; Böhm, K. J.; Unger, E. Thin Solid Films 1997, 305, 248253. (b) Behrens, S.; Rahn, K.; Habicht, W.; Böhm, K. J.; Rösner, H.; Dinjus, E.; Unger, E. Adv. Mater. 2002, 14, 1621-1625.CrossRefGoogle Scholar