Hostname: page-component-745bb68f8f-kw2vx Total loading time: 0 Render date: 2025-01-12T08:10:04.152Z Has data issue: false hasContentIssue false

Microstructured Bioactive Interfaces using Piezoelectric Ink Jet Technology

Published online by Cambridge University Press:  01 February 2011

Anand Doraiswamy
Affiliation:
adorais@email.unc.edu, University of North Carolina, Biomedical Engineering, 152 MacNider Hall, CB 57575, Chapel Hill, NC, 27599-7575, United States
Cerasela Z. Dinu
Affiliation:
Rensselaer Polytechnic Institute, Troy, NY, 12180, United States
Jan Sumerel
Affiliation:
JSumerel@dimatix.com, Fujifilm Dimatix, 2230 Martin Avenue, Santa Clara, CA, 95050, United States
Douglas B. Chrisey
Affiliation:
chrisd@rpi.edu, Rensselaer Polytechnic Institute, Troy, NY, 12180, United Stat es
Roger J. Narayan
Affiliation:
roger_narayan@unc.edu, University of North Carolina, Chapel Hill, NC, 27599-7575, United States
Get access

Abstract

We have demonstrated microscale patterning of biotin and streptaividin proteins using an athermal rapid prototyping process based on piezoelectric inkjet technology. A MEMS-based piezoelectric actuator was used to dispense picoliter quantities of fluid through micron-sized nozzles. Atomic force microscopy and Fourier infrared spectroscopy studies were performed on CAD/CAM deposited proteins that were prepared using several firing voltages. Our results indicate that piezoelectric inkjet deposition is a powerful non-contact, non-destructive process for developing high-throughput biological microarrays for use in biosensing, cell culturing, and tissue engineering.

Type
Research Article
Copyright
Copyright © Materials Research Society 2007

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. MacBeath, G., Scheiber, S. L., Science 289 (2000) 1760.Google Scholar
2. Patel, N., Bhandari, R., Shakersheff, K. M., Cannizzaro, S. M., Davies, M. C., Langer, R., Roberts, C. J.,Tendler, S. J. B., M.Williams, P., J. Biomater. Sci. Polym. Ed. 11 (2000) 319.Google Scholar
3. Kane, R, Takayama, S,Ostuni, E, Ingber, D, Whitesides, G, Biomaterials 20 (1999) 2363.Google Scholar
4. Folch, A., Jo, B, Hurtado, O, Beebe, D.J., Toner, M., J. Biomed. Mat. Res. 52 (2000) 346.Google Scholar
5. Neugebauer, S., Evans, S.R., Aguilar, Z.P., Mosbach, M., Fritsch, I., Schuhmann, W., Anal. Chem. 76 (2004) 458.Google Scholar
6. Ringeisen, B.R., Wu, P.K., Kim, H., Pique, A., Auyeung, R.Y., Young, H.D., Chrisey, D.B., Krizman, D.B., Biotechnol. Prog. 18 (2002) 1126.Google Scholar
7. Chrisey, D.B., Pique, A., McGill, R.A., Horwitz, J.S., Ringeisen, B.R., Bubb, D.M., Wu, P.K., Chem. Rev. 103 (2003) 553.Google Scholar
8. Lee, K.B., Park, S.J., Mirkin, C.A., Smith, J.C., Mrksich, M., Science 295 (2005) 1702.Google Scholar
9. Kampfhoefner, F.J., IEEE Trans. Elect. Dev. ED-19 (1972) 584.Google Scholar
10. Kuhn, L., Myers, A., Sci. Am. 240 (1979) 162.Google Scholar
11. Wilson, W.C., Boland, T., Anat. Rec. Part A 272 (2003) 491.Google Scholar
12. Mironov, V., Boland, T., Trusk, T., Forgacs, G., Markwald, R.R., Trends Biotechnol. 21 (2003) 157.Google Scholar
13. Barron, J.A., Spargo, B.J., Ringeisen, B.R., Appl. Phys. A 79 (2004) 1027.Google Scholar
14. Calvert, P., Chem. Mater. 13 (2001) 3299.Google Scholar
15. Br¸nahl, J., Grishij, A.M., Sens. Act. A 101 (2002) 371.Google Scholar