Hostname: page-component-745bb68f8f-hvd4g Total loading time: 0 Render date: 2025-01-27T00:19:24.666Z Has data issue: false hasContentIssue false

Microstructural characterization of copper metallic deposition by electroplating growth for SIP applications

Published online by Cambridge University Press:  01 March 2011

Céline Durand
Affiliation:
IPDIA, 2 rue de la Girafe, 14000 Caen, France
Bernadette Domengès
Affiliation:
LAMIPS, CRISMAT – NXP semiconductors laboratory, CNRS-UMR6508, ENSICAEN, UCBN, Presto Engineering Europe, 2 rue de la Girafe, 14000 Caen, France
Philippe Le Duc
Affiliation:
IPDIA, 2 rue de la Girafe, 14000 Caen, France
Get access

Abstract

Microstructural characterization (Focused Ion Beam and Transmission Electron Microscopy imaging) was performed on cross-sections of contacts in thick Electro Chemical Deposition copper metallization of System In Package Integrated Circuits. It was shown that the lower growth rate of ECD-Cu in the AlSiCu – barrier Ti – PVD-Cu – ECD-Cu layer stacking is related to a local higher resistivity induced by the presence of a great number of almost planar grain boundaries in the PVD-Cu layer, which are perpendicular to the growth axis. This morphology is a consequence of the almost heteroepitaxial growth of Ti layer on AlSiCu layer.

Type
Research Article
Copyright
Copyright © Materials Research Society 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Durand, C., PhD. Thesis, Caen University (2010).Google Scholar
2. Schlesinger, M., and Paunovic, M., “Modern Electroplating, 4th Edition”, ISBN: 0-471-16824-6 (2000).Google Scholar
3. Paunovic, M., and Schlesinger, M., “Fundamentals of Electrochemical Deposition, 2nd Edition”, ISBN: 0-471-71221-3 (2006).Google Scholar
4. Ohnishi, T., Sangyo, N., presented at the 2000 EFUG meeting, Dresden, Germany, 2000.Google Scholar
5. Roberts, H., Otterloo, B., presented at the 2001 EFUG meeting, Arcachon, France, 2001.Google Scholar
6. Giannuzzi, L.A., Kempshall, B.W., Schwarz, S.M., Lomness, J.K., Prenitzer, B.I., Stevie, F. A., Introduction to Focused ion Beam, Instrumentation, Theory, Technique and practice, (Springer US, 2006), p. 201.Google Scholar
7. Franklin, R.E., Kirk, E.C.C., Cleaver, J.R.A. and Ahmed, H., J. of Material Science Letters 7, 39 (1988).Google Scholar
8. Kola, R.R., Celler, G.K. and Harriot, L.R., Mater. Res. Soc. Symp. Proc. 279, 593 (1993).Google Scholar
9. Giannuzzi, L.A., Prenitzer, B.I., Kempshall, B.W., Introduction to Focused ion Beam, Instrumentation, Theory, Technique and practice, (Springer US, 2006), p. 43.Google Scholar
10. Lagrange, S., Brongersma, S.H., Judelewicz, M. et al. ., Microelec. Engineering 50, 449 (2000).Google Scholar
11. Brunoldi, G., Guerrieri, S., Alberici, S. G. et al. ., Microelec. Engineering 82, 289 (2005).Google Scholar
12. Yin, K. B., Xia, Y. D., et al. ., Scripta Materialia 58, 65 (2008).Google Scholar
13. Berger, A., Wilbrandt, P.-J., Ernst, F., Klement, U., and Haasen, P., Prog. Mater. Sci. 32, 1 (1988).Google Scholar
14. Mayadas, A. F. and Shatzkes, M., Phys. Rev B 1, 1382 (1970).Google Scholar
15. Artunc, N. and Öztürk, Z.Z., J. Phys. Condens. Matter 5, 559 (1993).Google Scholar
16. Wu, W., Brongersma, S.H., Van Hove, M. and Maex, K., Appl. Phys. Lett. 84, 2838 (2004).Google Scholar
17. Harper, J. M. E., Cabral, C., Jr., Andricacos, P. C., Gignac, L., Noyan, I. C., Rodbell, K. P. and Hu, C. K., J. Appl. Phys. 86, 2516 (1999).Google Scholar
18. Hau-Riege, S.P. and Thompson, C.V., Appl. Phys. Lett. 76, 309 (2000).Google Scholar