Hostname: page-component-745bb68f8f-kw2vx Total loading time: 0 Render date: 2025-01-26T04:20:47.470Z Has data issue: false hasContentIssue false

Micro Stresses in Welded High-Strength Stainless Steels

Published online by Cambridge University Press:  22 February 2011

P. LukÁš
Affiliation:
Nuclear Physics Institute, 250 68 Řež, Czech Republic
J. Janovec
Affiliation:
Faculty of Mechanical Engineering, CTU Prague, Czech Republic
K. Macek
Affiliation:
Faculty of Mechanical Engineering, CTU Prague, Czech Republic
P. Mikula
Affiliation:
Nuclear Physics Institute, 250 68 Řež, Czech Republic
P. Strunz
Affiliation:
Nuclear Physics Institute, 250 68 Řež, Czech Republic
M. VrÁna
Affiliation:
Nuclear Physics Institute, 250 68 Řež, Czech Republic
M. Zaffagnini
Affiliation:
Nuclear Physics Institute, 250 68 Řež, Czech Republic
Get access

Abstract

The dependence of residual stresses in martensitic-austenitic age-hardenable steels on a different technological treatment (welding by electron beam, postweld heat treatment) were investigated using a neutron diffraction. Experiments were performed in NPI Řež on a high-resolution diffractometer equipped with cylindrically bent perfect crystals. The resolution of the instrument (Δd/d ≈ 10-4; d-lattice spacing) enabled us to investigate plastic strains in weld joints.

Type
Research Article
Copyright
Copyright © Materials Research Society 1995

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1 Decker, R. F., Advanced Mater. & Processes 6, 45 (1988).Google Scholar
2 Macek, K., Pluhaf, J., Cejp, J., Materials Sci. Eng. 100, 153 (1988).Google Scholar
3 Hutchings, M. T. and Krawitz, A. D. (eds.), Measurement of Residual and Applied Stress Using Neutron Diffraction, NATO ASI Series, Applied Sciences 26 (Kluwer Acad. Publ., 1992).Google Scholar
4 Balzar, D., J. Res. Natl. Inst. Stand. Technol. 98,321(1993).Google Scholar
5 Lukáš, P., Vršna, M., Mikula, P. and Kulda, J., in Neutron Optical Devices and Applications, edited by Majkrzak, C. F. and Wood, J.L. (SPIE’s Int. Symp. on Optical Appl. Sciences and Engineering, 1738, San Diego, 1992), p. 438.Google Scholar
6 Mikula, P., Lukáš, P., Vránana, M. VrM., Klimanek, P., Kschidock, T., Macek, K., Janovec, J., Osborn, J. C. and Swallowe, G. M., J. de Physique IV, Colloque C7, 3 2183 (1993).Google Scholar
7 Magerl, A. and Wagner, V. (eds.), Focusing Bragg Optics, (Proc. of the Workshop on Focusing Bragg Optics, Braunschweig, May 1011, 1993. North-Holland, 1994).Google Scholar
8 Popovici, M. and Yelon, W.B., Instrum, Nucl.. Methods in Phys. Research A 338, 132 (1994).Google Scholar
9 Nandi, R. K., Kuo, H. K., Schlosberg, W., Wissler, G., Cohen, J.B. and Crist, B., J. Appl. Cryst. 17, 22 (1984).Google Scholar
10 Warren, B. E., Progr. Met. Phys. 8, 147 (1959).Google Scholar
11 Mignot, J. and Rondot, D., Acta Metall. 23, 1321 (1975).Google Scholar
12 Nandi, R. K., Sen Gupta, S. P., J. Appl. Cryst. 11 6 (1978).Google Scholar
13 de Keijser, T. H., Langford, J. I., Mittemeijer, E. J. and Vogels, B. P.., J. Appl. Cryst. 15, 308 (1982).Google Scholar
14 Williamson, G.K. and Smallman, R.E., Phil. Mag. 1, 34 (1955).Google Scholar
15 Speich, G. R., Trans. AIME 245, 2553 (1969).Google Scholar
16 Becker, H. J., Fuchs, K. D., Haberling, E., Thyssen Edelst. Tech. Ber., p.53 (1990).Google Scholar
17 Barnard, S. S. et al. , Scripta Metallurgica 15, 387 (1981).Google Scholar
18 Nižnik, S. B., Izv. akad. nauk - Metally 6, 98 (1982).Google Scholar