Hostname: page-component-745bb68f8f-hvd4g Total loading time: 0 Render date: 2025-01-12T09:59:20.243Z Has data issue: false hasContentIssue false

Methods for Dispersion of Carbon Nanotubes in Water and Common Solvents

Published online by Cambridge University Press:  18 June 2014

Boris I. Kharisov
Affiliation:
Universidad Autónoma de Nuevo León, Monterrey 66450, Mexico.
Oxana V. Kharissova
Affiliation:
Universidad Autónoma de Nuevo León, Monterrey 66450, Mexico.
Ubaldo Ortiz Méndez
Affiliation:
Universidad Autónoma de Nuevo León, Monterrey 66450, Mexico.
Get access

Abstract

Contemporary methods for dispersion of carbon nanotubes in water and non-aqueous media are discussed. Main attention is paid to ultrasonic, plasma techniques and other physical techniques, as well as to the use of surfactants, functionalizing and debundling agents of distinct nature (elemental substances, metal and organic salts, mineral and organic acids, oxides, inorganic and organic peroxides, organic sulfonates, polymers, dyes, natural products, biomolecules, and coordination compounds).

Type
Articles
Copyright
Copyright © Materials Research Society 2014 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Cui, L.. Adv. Mater. Res., 641-642(1), 436439 (2013).CrossRefGoogle Scholar
Bahr, J.L., Mickelson, E.T., Bronikowski, M.J., Smalley, R.E., J.M. Tour. Chem. Commun., 193194 (2001).CrossRefGoogle Scholar
Chen, W., Liu, X., Liu, Y., Kim, H.-I.. Materials Letters, 64(23), 25892592 (2010).CrossRefGoogle Scholar
Jovanović, S.P., Marković, Z.M., Kleut, D.N., Romević, N.Z., Trajković, V.S., Dramićanin, M.D., Todorović Marković, B.M.. Nanotechnology, 20(44), art. no. 445602 (2009).CrossRefGoogle Scholar
Ciftan Hens, S., Cunningham, G., McGuire, G., Shenderova, O.. Nanoscience and Nanotechnology Letters, 3(1), 7582 (2011).CrossRefGoogle Scholar
Kim, S., Lee, Y.-I., Kim, D.-H., Lee, K.-J., Kim, B.-S., Hussain, M., Choa, Y.-H.. Carbon, 51(1), 346354 (2013).CrossRefGoogle Scholar
Song, H., Ishii, Y., Al-Zubaidi, A., Sakai, T., Kawasaki, S.. Physical Chemistry Chemical Physics, 15(16), 57675770 (2013).CrossRefGoogle Scholar
Fogden, S., Howard, C.A., Heenan, R.K., Skipper, N.T., Shaffer, M.S.P.. ACS Nano, 6(1), 5462 (2012).CrossRefGoogle Scholar
Singh, J., Kothiyal, M.C., Pathania, D.. International Journal of Theoretical and Applied Science, 3(2), 1520 (2011).Google Scholar
Ou, S., Patel, S., Bauer, B.A.. Free energetics of carbon nanotube association in pure and aqueous ionic solutions. Journal of Physical Chemistry B, 116(28), 81548168 (2012).CrossRefGoogle ScholarPubMed
Zhang, L., Hashimoto, Y., Taishi, T., Ni, Q.-Q.. Applied Surface Science, 257(6), 18451849 (2011).CrossRefGoogle Scholar
Vlasov, A.Y., Venediktova, A.V., Videnichev, D.A., Kislyakov, I.M., Obraztsova, E.D., Sokolova, E.P.. Physica Status Solidi (B) Basic Research, 249(12), 23412344 (2012).CrossRefGoogle Scholar
Detsri, E., Dubas, S.T.. Applied Mechanics and Materials, 229-231, 223227 (2012).CrossRefGoogle Scholar
Stylianakis, M.M., Mikroyannidis, J.A., Kymakis, E.. Solar Energy Materials and Solar Cells, 94(2), 267274 (2010).CrossRefGoogle Scholar
Lucas Flores, O., Kharissova, O.V., Ortiz Mendez, U., Leija Gutiérrez, H., de Casas Ortiz, E., Kharisov, B.I.. Journal of Chemistry, Article ID 573570, 8 pages (2013).Google Scholar
Lee, Hang Woo et al. . Small, 5(9), 10191024 (2009).CrossRefGoogle Scholar
Banerjee, D., Jha, A., Chattopadhyay, K.K.. Macromolecular Research, 20(10), 10211028 (2012).CrossRefGoogle Scholar
Kim, M.J., Lee, J., Jung, D., Shim, S.E.. Journal of Macromolecular Science, Part A: Pure and Applied Chemistry, 47(6), 588594 (2010).CrossRefGoogle Scholar
Wang, B., Han, Y., Song, K., Zhang, T.. Journal of Nanoscience and Nanotechnology, 12(6), 46644669 (2012).CrossRefGoogle Scholar
Leinonen, H., Pettersson, M., Lajunen, M.. Carbon, 49(4), 12991304 (2011).10.1016/j.carbon.2010.11.049CrossRefGoogle Scholar
Li, H., Nie, J.C., Kunsági-Máte, S.. Chemical Physics Letters, 492 (4-6), 258262 (2010).CrossRefGoogle Scholar
Kumar, P., Bohidar, H.B.. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 361 (1-3), 1324 (2010).CrossRefGoogle Scholar
Datsyuk, V., Landois, P., Fitremann, J., Peigney, A., Galibert, A.M., Soulaa, B., Flahaut, E.. J. Mater. Chem., 19, 27292736 (2009).CrossRefGoogle Scholar
Chen, C.-Y., Jafvert, C.T.. Environmental Science and Technology, 44(17), 66746679 (2010).CrossRefGoogle Scholar
Hughes, J.M., Aherne, D., Bergin, S.D., Oneill, A., Streich, P.V., Hamilton, J.P., Coleman, J.N.. Nanotechnology, 23(26), art. no. 265604 (2012).Google Scholar