Hostname: page-component-745bb68f8f-lrblm Total loading time: 0 Render date: 2025-01-26T00:34:42.154Z Has data issue: false hasContentIssue false

Mechanisms of Inhibition of Crevice Corrosion in Alloy 22

Published online by Cambridge University Press:  19 October 2011

Raul B. Rebak*
Affiliation:
rebak1@llnl.gov, Lawrence Livermore National Laboratory, Chemistry and Materials Science, 7000 East Ave, L-631, Livermore, CA, 94550, United States, 925-422-1854, 925-422-2105
Get access

Abstract

Alloy 22 may be susceptible to crevice corrosion in chloride-containing environments, especially at temperatures above ambient. The presence of oxyanions, especially nitrate, minimizes or eliminates the susceptibility of Alloy 22 to crevice corrosion. Other anions such as sulfate, carbonate and fluoride were also reported as inhibitors of crevice corrosion in Alloy 22. It is argued that the occurrence of crevice corrosion is due to the formation of hydrochloric acid solution in the creviced region. Inhibitors act by eliminating the occurrence of hydrochloric acid or by hampering its action.

Keywords

Type
Research Article
Copyright
Copyright © Materials Research Society 2007

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. ASTM International, Standard B575, Vol.02.04 (ASTM, 2002: West Conshohocken, PA).Google Scholar
2. Rebak, R. B. and Payer, J. H., “Passive Corrosion Behavior of Alloy 22,” International High-Level Radioactive Waste Management Conference, Las Vegas, NV April 30 to May 04, 2006 (American Nuclear Society 2006: La Grange Park, IL).Google Scholar
3. Kehler, B. A., Ilevbare, G. O. and Scully, J. R., Corrosion, 1042 (2001).Google Scholar
4. Evans, K. J. and Rebak, R. B. “Passivity of Alloy 22 in Concentrated Electrolytes. Effect of Temperature and Solution Composition,” in Corrosion Science – A Retrospective and Current Status in Honor of Robert P. Frankenthal, PV 2002–13, p. 344354 (The Electrochemical Society, 2002: Pennington, NJ).Google Scholar
5. Evans, K. J., Day, S. D., Ilevbare, G. O., Whalen, M. T., King, K. J., Hust, G. A., Wong, L. L., Estill, J. C. and Rebak, R. B., “Anodic Behavior of Alloy 22 in Calcium Chloride and in Calcium Chloride plus Calcium Nitrate Brines,” in PVP-Vol. 467, Transportation, Storage and Disposal of Radioactive Materials –; 2003, p. 55 (ASME, 2003: New York, NY).Google Scholar
6. Brossia, C. S., Browning, L., Dunn, D. S., Moghissi, O. C., Pensado, O. and Yang, L., “Effect of Environment on the Corrosion of Waste Package and Drip Shield Materials,” Publication of the Center for Nuclear Waste Regulatory Analyses (CNWRA 2001–03), September 2001.Google Scholar
7. Dunn, D. S., Yang, L., Pan, Y.-M. and Cragnolino, G. A., “Localized Corrosion Susceptibility of Alloy 22,” Paper 03697 (NACE International, 2003: Houston, TX).Google Scholar
8. Evans, K. J., Yilmaz, A., Day, S. Daniel, Wong, L. L., Estill, J. C. and Rebak, R. B., “Using Electrochemical Methods to Determine Alloy 22's Crevice Corrosion Repassivation Potential,” Journal of Metals, Vol 57, pp. 5661 (2005).Google Scholar
9. Dunn, D. S., Pan, Y.-M., Yang, L. and Cragnolino, G. A., Corrosion, 61, 1078 (2005).Google Scholar
10. Dunn, D. S., Pan, Y.-M., Yang, L. and Cragnolino, G. A., Corrosion, 62, 3 (2006).Google Scholar
11. Cragnolino, G. A., Dunn, D. S. and Pan, Y.-M., “Localized Corrosion Susceptibility of Alloy 22 as a Waste Package Container Material,” in Scientific Basis for Nuclear Waste Management XXV, Vol.713, p. 53 (Materials Research Society 2002: Warrendale, PA).Google Scholar
12. Dunn, D. S. and Brossia, C. S., “Assessment of Passive and Localized Corrosion Processes for Alloy 22 as a High-Level Nuclear Waste Container Material,” Paper 02548 (NACE International, 2002: Houston, TX).Google Scholar
13. Lee, J. H., Summers, T. and Rebak, R. B., “A Performance Assessment Model for Localized Corrosion Susceptibility of Alloy 22 in Chloride Containing Brines for High Level Nuclear Waste Disposal Container,” Paper 04692 (NACE International, 2004: Houston, TX).Google Scholar
14. Dunn, D. S., Yang, L., Wu, C. and Cragnolino, G. A., “Effect of Inhibiting Oxyanions on the Localized Corrosion Susceptibility of Waste Package Container Materials,” in Scientific Basis for Nuclear Waste Management XXVIII, Vol.824 p. 33 (MRS, 2004: Warrendale, PA).Google Scholar
15. Dunn, D. S., Pan, Y.-M., Chiang, K. T., Yang, L. and Cragnolino, G. A. and He, X., “Localized Corrosion Resistance and Mechanical Properties of Alloy 22 Waste Package Outer Containers,” JOM, January 2005, pp 4955 (2005).Google Scholar
16. Rebak, R. B., “Factors Affecting the Crevice Corrosion Susceptibility of Alloy 22,” Paper 05610, Corrosion/2005 (NACE International, 2005: Houston, TX).Google Scholar
17. Dunn, D. S., Pan, Y.-M., Yang, L. and Cragnolino, G. A., Corrosion, 61, 11, 1076, 2005.Google Scholar
18. Ilevbare, G. O., King, K. J., Gordon, S. R., Elayat, H. A., Gdowski, G. E. and Summers, T. S. E., Journal of The Electrochemical Society, 152, 12, B547–B554, 2005.Google Scholar
19. Ilevbare, G. O., Etien, R. A., Estill, J. C., Hust, G. A., Yilmaz, A., Stuart, M. L., and Rebak, R. B., “Anodic Behavior of Alloy 22 in High Nitrate Brines at Temperatures Higher than 100°C,” Paper 93423 in the Proceedings of PVP2006-ICPVT-11, 2006 ASME Pressure Vessels and Piping Division Conference, July 23–27, 2006, Vancouver, BC, Canada.Google Scholar
20. Ilevbare, G. O., Corrosion, 62, 340 (2006).Google Scholar
21. Carranza, R. M., Rodriguez, M. A. and Rebak, R. B., “Inhibition of Chloride Induced Crevice Corrosion in Alloy 22 by Fluoride Ions,” Paper 06622, Corrosion/2006, NACE International, March 12–16, 2006, San Diego, CA (NACE International, Houston, TX).Google Scholar
22. Fontana, M. G., Corrosion Engineering, p. 53 (McGraw-Hill, 1986: New York, NY).Google Scholar
23. Sedriks, A. J., Corrosion of Stainless Steels, p. 177 (John Wiley & Sons, 1996: New York, NY).Google Scholar
24. Crook, P., Meck, N. S. and Rebak, R. B., Paper 07481, Corrosion/2007 (Houston, TX: NACE International, 2007).Google Scholar
25. Rebak, R. B. and Crook, P., “Influence of the Environment on the General Corrosion Rate of Alloy 22 (N06022),” in Proceedings of the 2004 ASME Pressure Vessels and Piping Division Conference, July 25–29 2004, San Diego, CA, Vol.483, pp. 131136 (American Society of Mechanical Engineers, 2004: New York, NY).Google Scholar
26. Haynes International Inc., Corrosion Database, Kokomo, IN 19852005.Google Scholar
27. Pourbaix, M., Atlas of Electrochemical Equilibria in Aqueous Solutions (Houston, TX: NACE International, 1974).Google Scholar
28. CRC Handbook of Chemistry and Physics, 70th Edition, Weast, R. C. Editor-in-chief (CRC Press, Inc., Boca Raton, FL 1989).Google Scholar
29. http://en.wikipedia.org/wiki/Hydrochloric_acid, http://en.wikipedia.org/wiki/Nitric_acidGoogle Scholar