Hostname: page-component-745bb68f8f-b95js Total loading time: 0 Render date: 2025-01-26T11:46:18.878Z Has data issue: false hasContentIssue false

Mechanical Spectroscopy of Nanocrystalline Metals

Published online by Cambridge University Press:  14 March 2011

E. Bonetti
Affiliation:
Department of Physics, University of Bologna and INFMv. Berti-Pichat 6/2 40127 Bologna, Italy
L. Pasquini
Affiliation:
Department of Physics, University of Bologna and INFMv. Berti-Pichat 6/2 40127 Bologna, Italy
L. Savini
Affiliation:
Department of Physics, University of Bologna and INFMv. Berti-Pichat 6/2 40127 Bologna, Italy
Get access

Abstract

The mechanical behavior of nanocrystalline iron and nickel prepared by mechanical attrition and inert gas condensation was investigated using mechanical spectroscopy techniques in the quasi static-and low frequency dynamic stress-strain regimes. The measures were performed on samples previously stabilized by thermal annealing at low homologous temperatures. The results of elastic energy dissipation, creep, and creep recovery measurements performed in the low strain regime (ε = 10−5−10−3) allowed to trace a phenomenological picture of the anelastic and viscoplastic behavior of nanocrystalline Ni and Fe in the 300-450 K range with different grain sizes and interfaces disorder degree. Activation energies of the thermally activated anelastic and plastic mechanisms responsible for the mechanical behavior have been evaluated.

Type
Research Article
Copyright
Copyright © Materials Research Society 2001

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Lasalmonie, A. and Strudel, J.L., J. Mater. Sci., 21, 1837 (1986).Google Scholar
2. Harzt, E., Acta Mater., 46, 5611 (1998).Google Scholar
3. Siegel, R.W. and Fougere, G.E., Nanostruct. Mater., 6, 205 (1995).Google Scholar
4. Weertman, J.R. et al. , in Mechanical Behaviour of Bulk Nanocrystalline Materials, MRS Bulletin, 24 (n.2), 44 (1999).Google Scholar
5. Swygenhoven, H.Van, Caro, A., Appl. Phys. Lett., 71, 652 (1997).Google Scholar
6. Schiøtz, J., Tolla, F. Di, and Jacobsen, K.W., Nature, 391, 561 (1998).Google Scholar
7. Swygenhoven, H. Van, Farkas, D., Caro, A., Phys. Rev. B, 62, 831 (1999).Google Scholar
8. Keblinski, P., Wolf, D., Phillpot, S.R., and Gleiter, H., Scripta Mater., 41, 631 (1999).Google Scholar
9. Schaefer, H.-E., Reimann, K., Straub, W., Phillipp, F., Tanimoto, H., Brossmann, U., and Würschum, R., Mater. Sci. Eng. A, 286, 24 (2000).Google Scholar
10. Koch, C.C., Morris, D.G., and Inoue, A., in Mechanical Behaviour of Bulk Nanocrystalline Materials, MRS Bulletin, 24 (n.2), 54 (1999).Google Scholar
11. Legros, M., Elliott, B.R., Rittner, M.N., Weertman, J.R., and Hemker, K.J., Philos. Mag. A, 80, 1017 (2000).Google Scholar
12. Nowick, A.S. and Berry, B.S., Anelastic Relaxation in Crystalline Solids (Academic Press, 1972).Google Scholar
13. Schoeck, G., Bisogni, E. and Shyne, J., Acta Metall., 12, 1466 (1964).Google Scholar
14. Bonetti, E., Campari, E.G., Pasquini, L. and Sampaolesi, E., J. Appl. Phys., 84, 4219 (1998).Google Scholar
15 Bianco, L. Del, Hernando, A., Bonetti, E., and Ballesteros, C., Phys. Rev. B 59, 14778 (1999).Google Scholar
16 Bonetti, E., Bianco, L. Del, Fiorani, D., Rinaldi, D., Caciuffo, R., and Hernando, A., Phys. Rev. Lett. 83, 2829 (1999).Google Scholar
17 Löffler, J.F., Meyer, J.P., Doudin, B., Ansermet, J.P., and Wagner, W., Phys. Rev. B 57, 2915 (1998).Google Scholar
18. Bonetti, E., Campari, E.G., Bianco, L. Del, Pasquini, L., Sampaolesi, E., Nanostruct. Mater., 11, 709 (1999).Google Scholar
19 Bonetti, E., Bianco, L. Del, Pasquini, L., Sampaolesi, E., Nanostruct. Mater., 10, 741, (1998).Google Scholar
20. Harangozó, I.Z., Kedves, F.J., in Internal Friction in Solids, edGorczyca, s. S., Magalas, L.B. (Wydawnictwo AGH, Krakow 1984) p. 209.Google Scholar
21. Siegel, R.W. and Fougere, G.E., in Nanophase Materials, edited by Hadjipanayis, G.C. and Siegel, R.W., (Kluwer Academic Publishers, 1994) p. 233.Google Scholar
22 Kuč, J., Millon, B., Ružickova, J., Foldyna, V. and Jakobova, A., Acta Metall., 22, 135 (1974).Google Scholar
23. Gleiter, H. and Chalmers, B., High Angle Grain Boundaries, (Pergamon Press, 1972).Google Scholar
24. Bronfin, M.B., Bulatov, G.S. and Drugova, I.A., Fiz. Met. i Metalloved., 40, 363 (1975).Google Scholar
25. Reca, N.W. De and Pampillo, C.A., Scri. Metall., 9, 1355 (1975).Google Scholar
26. Chang, H., Höfler, H., Alstetter, C., and Averbach, R., Scripta Metall. Mater., 25, 1161 (1991).Google Scholar
27. Chookshi, A., Rosen, A., Karch, J., and Gleiter, H., Scripta Metall., 23, 1679 (1989).Google Scholar
28. Conrad, H. and Narayan, J., Scripta Mater., 42, 1025 (2000).Google Scholar
29 Sanders, P.G., Rittner, M., Kiedaisch, E., Weertman, J.R., Kung, H., and Lu, Y.C., Nanostruct. Mater., 9, 433 (1997).Google Scholar
30 Fougere, G.E., Weertman, J.R., and Siegel, R.W., Nanostruct. Mater. 5, 127 (1995).Google Scholar