Published online by Cambridge University Press: 16 February 2011
Artificially multilayered copper/nickel thin films with bilayer repeat lengths between 1.6 and 12 nm were produced by ion beam sputtering. The mechanical properties of these films were investigated by low load microhardness and nanoindentation (force versus depth) techniques. It was found that none of the films displayed bilayer repeat length dependent enhanced elastic behavior (the supermodulus effect) as measured during unloading in the nanoindenter. However, enhancements in hardness, as measured by both the nanoindenter and the low load microhardness tester, were observed in films with small bilayer repeat lengths. These measurements displayed a Hall-Petch-type relationship, using the individual layer thickness (equal to half the bilayer repeat length) as the characteristic “grain size.” This hardness behavior can be understood in terms of a mechanism involving dislocation pinning at the interfaces analogous to the mechanism of grain boundary hardening.
To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Find out more about the Kindle Personal Document Service.
To save this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Dropbox account. Find out more about saving content to Dropbox.
To save this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Google Drive account. Find out more about saving content to Google Drive.