Hostname: page-component-745bb68f8f-s22k5 Total loading time: 0 Render date: 2025-01-26T14:22:07.619Z Has data issue: false hasContentIssue false

Magnetic Resonance in Hydrogenated Nanocrystalline Silicon Thin Films

Published online by Cambridge University Press:  01 February 2011

Tining Su
Affiliation:
tsu@mines.edu, Colorado School of Mines, Department of Physics, 1523 Illinois Street, Golden, CO, 80401, United States
Tong Ju
Affiliation:
jutong@gmail.com, University of Utah, Department of Physics, Salt Lake City, UT, 84112, United States
Baojie Yan
Affiliation:
byan@uni-solar.com, United Solar Ovonic LLC, Troy, MI, 48326, United States
Jeffrey Yang
Affiliation:
jyang@uni-solar.com, United Solar Ovonic LLC, Troy, MI, 48326, United States
Subhendu Guha
Affiliation:
sguha@uni-solar.com, United Solar Ovonic LLC, Troy, MI, 48326, United States
P. Craig Taylor
Affiliation:
pctaylor@mines.edu, Colorado School of Mines, Department of Physics, Golden, CO, 80401, United States
Get access

Abstract

We have investigated the localized electronic states in mixed-phase hydrogenated nanocrystalline silicon thin films (nc-Si:H) with electron-spin-resonance (ESR). The dark ESR signal most likely arises from defects at the grain boundaries or within the crystallites. With illumination with photon energies ranging from 1.2 eV to 2.0 eV, there is no evidence of photo-induced carriers trapped in the bandtail states within the amorphous region. Dependence of the light-induced ESR (LESR) upon the exciting photon energy reveals that, at different excitation photon energies, different regions dominate the optical absorption. This behavior may have potential consequences for understanding the light-induced degradation in nc-Si:H.

Type
Research Article
Copyright
Copyright © Materials Research Society 2008

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Meier, J. Flückiger, R., Keppner, H. Shah, A. Appl. Phys. Lett. 65, 860 (1994).Google Scholar
2. Vetterl, O. Finger, F. Carius, R. Hapke, P. Houben, L. Kluth, O. Lambertz, A. Mück, A., Bech, B. Wagner, H. Sol. Energy Mater. Sol. Cells 62, 97 (2000).Google Scholar
3. Yamamoto, K. IEEE Trans. Electron. Dev. 46, 2041 (1990).Google Scholar
4. Roschek, T. Repman, T., Müller, J., Tech, B. Wagner, H. in Proceedings of the 28th IEEE Photovoltaic Speciealists Conference, (IEEE, NY, 2000) pp150.Google Scholar
5. Yue, G. Yan, B. Ganguly, G. Yang, J. and Guha, S. Appl. Phys. Lett. 88, 263507 (2006).Google Scholar
6. Su, T. Ju, T. Yan, B. Yang, J. Guha, S. and Taylor, P. C. J. Non-cryst. Solids (in press).Google Scholar
7. Inglefield, C. private communication.Google Scholar
8. Lima, M. M. de, Taylor, P. C. Morrison, S. Legeune, A. Marwues, F. C. Phys. Rev. B 65, 235324 (2002), and references therein.Google Scholar
9. Schumm, G. Jackson, W. B. and Street, R. A. Phys. Rev. B 48, 14198 (1993).Google Scholar
10. Schultz, N. A. and Taylor, P. C. Phys. Rev. B 65, 235207 (2002), and references therein.Google Scholar
11. Street, R. A. Hydrogenated Amorphous Silicon, (Cambridge University Press, Cambridge, 1991), pp285.Google Scholar