Hostname: page-component-745bb68f8f-grxwn Total loading time: 0 Render date: 2025-01-26T01:07:52.307Z Has data issue: false hasContentIssue false

Local Electronic Structure and UV Electroluminescence of n-ZnO:N/p-GaN Heterojunction LEDs Grown by Remote Plasma Atomic Layer Deposition

Published online by Cambridge University Press:  25 May 2012

Jui F. Chien
Affiliation:
Department of Materials Science and Engineering, National Taiwan University, Taipei, Taiwan, Republic of China.
Ching H. Chen
Affiliation:
Protrustech Corporation Limited, Tainan, Taiwan, Republic of China.
Jing J. Shyue
Affiliation:
Department of Materials Science and Engineering, National Taiwan University, Taipei, Taiwan, Republic of China. Research Center for Applied Sciences, Academia Sinica, Taipei, Taiwan, Republic of China.
Miin J. Chen*
Affiliation:
Department of Materials Science and Engineering, National Taiwan University, Taipei, Taiwan, Republic of China. Center for Emerging Material and Advanced Devices, National Taiwan University, Taipei, Taiwan, Republic of China.
*
#x002A;E-mail: mjchen@ntu.edu.tw
Get access

Abstract

Nitrogen-doped ZnO (ZnO:N) films have been prepared by remote plasma atomic layer deposition (RP-ALD) and treated by rapid thermal annealing (RTA) in oxygen atmosphere. The local electronic structures of the (ZnO:N) films were investigated by X-ray photoelectron spectroscopy (XPS) and X-ray absorption near edge spectroscopy (XANES) at the O K-edge. The XPS reveals the presence of the Zn-N bond in the ZnO:N films, indicating that partial amounts of oxygen sites are occupied by nitrogen species. This is correspondent with the decrease of electron concentration in ZnO:N films with the nitrogen doping concentration, as indicated by the Hall effect measurement. The RP-ALD technique was applied to fabricate the n-type ZnO:N/p-type GaN heterojunction LEDs. Dominant ultraviolet electroluminescence at 371 nm from the ZnO:N layer was observed at room temperature.

Type
Articles
Copyright
Copyright © Materials Research Society 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Huang, M. H., Mao, S., Feick, H., Yan, H. Q., Wu, Y. Y., King, H., Weber, E., Russo, R., and Yang, P., Science 292, 1897 (2001).Google Scholar
2. Rogers, D. J., Hosseini Teherani, F., Yasan, A., Minder, K., Kung, P., and Razeghi, M., Appl. Phys. Lett. 88, 141918 (2006).Google Scholar
3. Guo, X. L., Choi, J. H., Tabata, H. and Kawai, T., Jpn. J. Appl. Phys. Lett. 40, pp. L177L188 (2001).Google Scholar
4. Lim, S. J., Kim, J. M., Kim, D., Kwon, S., Park, J. S., and Kimb, H., J. Electrochem. Soc., 157 (2) H214H218 (2010).Google Scholar
5. Kwon, S., Bang, S., Lee, S., Jeon, S., Jeong, W., Kim, H., Gong, S. C., Chang, H. J., Park, H. H. and Jeon, H., Semicond. Sci. Technol. 24, 035015 (6pp) (2009).Google Scholar
6. Look, D. C., Hemsky, J. W., and Sizelove, J. R., Phys. Rev. Lett. 82, No.12 (1999).Google Scholar
7. Jeong, S. H., Park, B.N., Lee, S. B., Boo, J. H., Thin Solid Films, 516, 55865589 (2008).Google Scholar
8. Wenckstern, H. V., Benndorf, G., Heitsch, S., Sann, J., Brandt, M., Schmidt, H., Lenzner, J., Lorenz, M., kuznetsov, A.Y., Meyer, B. K., Grundmann, M., Appl. Phys. A, 88, 125128 (2007).Google Scholar
9. Ryu, Y. R., Lee, T. S., White, H. W., Appl. Phys. Lett. 83, No.1 (2003).Google Scholar
10. Park, C. H., Zhang, S. B., and Wei, S. H., Phys. Rev. B, 66, 073202 (2002).Google Scholar
11. Liu, W., Gu, S. L., Ye, J. D., Zhu, S. M., Liu, S. M., Zhou, X., Zhang, R., Shi, Y., and Zheng, Y. D., Appl. Phys. Lett. 88, 092101 (2006).Google Scholar
12. Jiao, S. J., Zhang, Z. Z., Lu, Y. M., Shen, D. Z., Yao, B., Zhang, J. Y., Li, B. H., Zhao, D. X., Fan, X. W., and Tang, Z. K., Appl. Phys. Lett. 88, 031911 (2006).Google Scholar
13. Singh, A. V., Mehra, R. M., Wakahara, A. and Yoshida, A., J. Appl. Phys. 93, 396 (2003).Google Scholar
14. Kim, H., Cepler, A., Cetina, C., Knies, D., Osofsky, M.S., Auyeung, R.C.Y., and Piqué, A., Appl Phys A, 93: 593598 (2008).L. L. Chen, J. G. Lu, Z. Z. Ye, Y. M. Lin, B. H. Zhao, Y. M. Ye, J. S. Li, and L. P. Zhu, Appl. Phys. Lett. 87, 252106 (2005).Google Scholar
15. Dunlop, L., Kursumovic, A., MacManus-Driscoll, J. L., Appl. Phys. Lett., 93, 17 (2008).Google Scholar
16. Shih, Y. T., Chien, J. F., Chen, M. J., Yang, J. R., and Shiojiri, M., J. Electrochem. Soc., 158(5) H516H520 (2011).Google Scholar
17. Bencze, K. Z., Kondapalli, K. C. and Stemmler, T. L., Encyclopedia of Inorganic Chemistry, John Wiley & Sons, Ltd. (2008).Google Scholar
18. Joseph, M., Tabata, H., Saeki, H., Ueda, K., Kawai, T., Physica B, 302, 140148 (2001).Google Scholar
19. Jiao, S. J., Zhang, Z. Z., Lu, Y. M., Shen, D. Z., Yao, B., Zhang, J. Y., Li, B. H., Zhao, D. X., and Fan, X. W., Tang, Z. K., Appl. Phys. Lett. 88, 031911 (2006).Google Scholar
20. Chiou, J. W.; Kumar, K. P.; Jan, J. C.; Tsai, H. M.; Bao, C. W.; Pong, W. F.; Chien, F. Z. Auger and Direct Electron Spectra in X-ray Photoelectron Studies of Zinc, Zinc Oxide, Gallium and Gallium Oxide. Appl. Phys. Lett. 85, 3220 (2004).Google Scholar
21. Jirsak, T.; Dvorak, J.; Rodriguez, Jose´ A. Adsorption of NO2 on Rh (111) and Pd/Rh (111): Photoemission Studies. Surf. Sci. 436, L683 (1999).Google Scholar