Hostname: page-component-745bb68f8f-b6zl4 Total loading time: 0 Render date: 2025-01-26T03:44:08.129Z Has data issue: false hasContentIssue false

Liquid State Polydimethylsiloxane (PDMS) Wrinkle Formation Process for Various Applications.

Published online by Cambridge University Press:  01 February 2011

Sang Hoon Lee
Affiliation:
shl081000@utdallas.edu, University of Texas at Dallas, Materials Science and Engineering, Richardson, Texas, United States
Jangbae Jeon
Affiliation:
jbjeon@utdallas.edu, University of Texas at Dallas, Electrical Engineering, Richardson, Texas, United States
Sang Ho Lee
Affiliation:
shl082000@utdallas.edu, University of Texas at Dallas, Materials Science and Engineering, Richardson, Texas, United States
Moon J. Kim
Affiliation:
moonkim@utdallas.edu, University of Texas at Dallas, Materials Science and Engineering, Richardson, Texas, United States
Get access

Abstract

Here we report an epoch-making simple fabrication for wrinkle formation. The present wrinkle formation process is a solution for controlling the area, shape and direction of wrinkle area by forming wrinkles on the liquid state polydimethylsiloxane directly exposed to sputtered metal particles in the low vacuum plasma chamber in various vacuum states and deposition conditions. Also the process allows us to make extremely flexible metal thin film electrode with approved adhesion. These bring us possibilities of actual electrical and biological applications.

Type
Research Article
Copyright
Copyright © Materials Research Society 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1 Moon, M.-W., Lee, S.H., Sun, J.-Y., Oh, K.H., Vaziri, A., Hutchinson, J.W., Proc. Natl Acad. Sci. USA 104 (2007) 1130 Google Scholar
2 Khademhosseini, A., Langer, R., Borenstein, J., Vacanti, J. P., Proc. Natl Acad. Sci. USA 103 (2006) 2480 Google Scholar
3 Jiang, X., Takayama, S., Qian, X., Ostuni, E., Wu, H., Bowden, N., LeDuc, P., Ingber, D.E., Whitesides, G.M., Langmuir 18 (2002) 3273.Google Scholar
4 Geim, A.K., Dubonos, S.V., Grigorieva, I.V., Novoselov, K.S., Zhukov, A.A., Shapoval, S.Y., Nature Mater. 2 (2003) 461 Google Scholar
5 Baeka, Ju-Yeoul Baek, c, Ana, Jin-Hee, Choi, Jong-Min, Park, Kwang-Suk, Sen, Sang-Hoon Lee. Actu. A 143 (2008) 423429 Google Scholar
6 Schweikart, Alexandra, Fery, Andreas, Microchim Acta 165 (2009) 249263 Google Scholar
7 Chung, S., Lee, J. H., Moon, M.-W., Han, J., Kamm, Roger D., Adv. Mater. (2008) 20, 30113016 Google Scholar
8 Moon, M.-W., Lee, S.H., Sun, J.-Y., Oh, K.H., Vaziri, A., Hutchinson, J.W., Scrip. Mater 57 (2007) 1130 Google Scholar
9 Bowden, N, Brittain, S, AG, Evans, JW, Hutchinson, GM, Whitesides (1998) Nature 393:146149 Google Scholar
10 Efimenko, K., Rackaitis, M., Manias, E., Vaziri, A., Mahadevan, L., Genzer, J., Nat. Mater. 4 (2005) 293.Google Scholar
11 YR, Kim, Chen, P, MJ, Aziz, Branton, D, JJ, Vlassak (2006) J Appl Phys 100: 104322.Google Scholar
12 Cerda, E., Mahadevan, L., Phys. Rev. Lett. (2003) 90, 074302 Google Scholar