Hostname: page-component-745bb68f8f-hvd4g Total loading time: 0 Render date: 2025-01-12T10:13:10.476Z Has data issue: false hasContentIssue false

Light-Emitting and Structural Properties of Si-rich HfO2 Thin Films Fabricated by RF Magnetron Sputtering

Published online by Cambridge University Press:  19 November 2013

D. Khomenkov
Affiliation:
Taras Shevchenko National University of Kyiv, Faculty of Physics, 4 Pr. Hlushkov, Kyiv 03022, Ukraine
Y.-T. An
Affiliation:
CIMAP/ENSICAEN/UCBN, 6 Blvd. Maréchal Juin, 14050 Caen Cedex 4, France
X. Portier
Affiliation:
CIMAP/ENSICAEN/UCBN, 6 Blvd. Maréchal Juin, 14050 Caen Cedex 4, France
C. Labbe
Affiliation:
CIMAP/ENSICAEN/UCBN, 6 Blvd. Maréchal Juin, 14050 Caen Cedex 4, France
F. Gourbilleau
Affiliation:
CIMAP/ENSICAEN/UCBN, 6 Blvd. Maréchal Juin, 14050 Caen Cedex 4, France
L. Khomenkova
Affiliation:
V. Lashkaryov Institute of Semiconductor Physics at NASU, 41 Pr. Nauky, Kyiv 03028, Ukraine
Get access

Abstract

Structural, optical and luminescent properties of Si-rich HfO2 films fabricated by RF magnetron sputtering were investigated versus annealing treatment. Pronounced phase separation process occurred at 950-1100°C and resulted in the formation of hafnia and silica phases, as well as pure silicon clusters. An intense light emission of annealed samples in visible spectral range was obtained under broad band excitation. It was ascribed to exciton recombination inside silicon clusters as well as host defects. To confirm the formation of Si clusters, the structures were co-doped with Er3+ ions and effective light emission at 1.54µm was obtained under non-resonant excitation due to energy transfer from Si clusters towards Er3+ ions. The interaction of Si clusters, host defects and Er3+ ions under is discussed.

Type
Articles
Copyright
Copyright © Materials Research Society 2013 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

He, G., Zhu, L.Q., Sun, Z.Q., Wan, Q., Zhang, L.D., Progress in Materials Science 56 (2011) 475.CrossRefGoogle Scholar
Khomenkova, L., Portier, X., Cardin, J., Gourbilleau, F.. Nanotechnology 21 (2010) 285707.CrossRefGoogle Scholar
Khomenkova, L., Sahu, B.S., Slaoui, A., Gourbilleau, F., Nanoscale Research Letters 6, 172 (2011).Google Scholar
Khoshman, J.M., Khan, A. and Kordesch, M.E., Surf. Coat. Technol., 202, 2500 (2008).CrossRefGoogle Scholar
Stenzel, O., Wilbrandt, S., Yulin, S., Kaiser, N., Held, M., Tünnermann, A., Biskupek, J. and Kaiser, U., Opt. Mater. Express, 1, 278 (2011).CrossRefGoogle Scholar
Kirm, M., Aarik, J., Jürgens, M. and Sildos, I., Nucl.Instr.Meth.A, 537, 251 (2005).CrossRefGoogle Scholar
Smits, K., Grigorjeva, L., Millers, D., Sarakovskis, A., Grabis, J. and Lojkowski, W., J. Lumin., 131, 2058 (2011).Google Scholar
Kiisk, V., Sildos, I., Lange, S., Reedo, V., Ta¨tte, T., Kirm, M. and Aarik, J., Appl. Surf. Sci. 247, 412 (2005).Google Scholar
Liu, L. X., Ma, Z. W., Xie, Y. Z., Su, Y. R., Zhao, H. T., Zhou, M., Zhou, J. Y., Li, J., Xie, E. Q., J. Appl. Phys. 107 (2010) 024309.Google Scholar
Stoneman, C., Esterowitz, L., Opt. Lett. 15 (1990) 486.CrossRefGoogle Scholar
Feng, L., Wang, J., Tang, Q., Liang, L.F., Liang, H.B., Su, Q., J. Lumin. 124 (2007) 187.CrossRefGoogle Scholar
Kenyon, A.J., Semicond. Sci. Technol., 20, R65 (2005).Google Scholar
Wojdak, M., Klik, M., Forcales, M., Gusev, O. B., Gregorkiewicz, T., Pacifici, D., Franzò, G., Priolo, F., and Iacona, F., Phys. Rev. B 69, 233315 (2004).Google Scholar
Cueff, S., Labbé, C., Cardin, J., Doualan, J.-L., Khomenkova, L., Hijazi, K., Jambois, O., Garrido, B. and Rizk, R., J. Appl. Phys., 108 (2010), p. 064302 Google Scholar
Miniscalco, J., , J. Lightwave Technol. 9 (1991) 234.CrossRefGoogle Scholar
Righini, G.C., Berneschi, S., Nunzi Conti, G., Pelli, S., Moser, E., Retoux, R., Féron, P., Gonçalves, R.R., Speranza, G., Jestin, Y., Ferrari, M., Chiasera, A., Chiappini, A., Armellini, C.. J. Non-Cryst. Sol. 355 (2009) 1853.Google Scholar
Khomenkova, L., -T.An, Y., Labbé, C., Portier, X., Gourbilleaua, F., ECS Trans., 45 (2012) 119.CrossRefGoogle Scholar
Richter, H., Wang, Z.P. and Ley, L., Solid State Comm. 39 (1981) 625.CrossRefGoogle Scholar
Talbot, E., Lardé, R., Gourbilleau, F., Dufour, C., Pareige, P.. Eur. Phys. Lett. 87, (2009) 26004.CrossRefGoogle Scholar
Khomenkova, L., Korsunska, N., Yukhimchuk, V., Jumayev, B., Torchynska, T., Vivas Hernandez, A., Many, A., Goldstein, Y., Savir, E., Jedrzejewski, J.. J. Lumin., 102-103, (2003) 705.CrossRefGoogle Scholar
Noh, H.-K., Ruy, B., Choi, E.-A., Bang, J., and Chang, K.J., Appl. Phys. Lett. 95, 082905 (2009).Google Scholar
Cueff, S., Labbé, C., Dierre, B., Fabbri, F., Sekiguchi, T., Portier, X., Rizk, R., , J. Appl. Phys. 108 (2011) 113504.CrossRefGoogle Scholar
Rozo, C., Fonseca, L. F., J. Phys.: Condens. Matter 20 (2008) 315003 CrossRefGoogle Scholar
Rozo, C., Jaque, D., Fonseca, L.F., Solé, J.G., Lumin, J.. 128 (2008) 1197.CrossRefGoogle Scholar
Kanjilal, A., Rebohle, L., Voelskow, M., Skorupa, W., and Helm, M., Appl. Phys. Lett. 94, 051903 (2009).Google Scholar