Hostname: page-component-745bb68f8f-kw2vx Total loading time: 0 Render date: 2025-01-27T00:04:01.059Z Has data issue: false hasContentIssue false

Length Matters: Keeping Atomic Wires in Check

Published online by Cambridge University Press:  27 February 2015

Brian Cunningham
Affiliation:
Atomistic Simulation Centre, School of Mathematics and Physics, Queen’s University Belfast, Belfast BT7 1NN, U.K.
Tchavdar N. Todorov
Affiliation:
Atomistic Simulation Centre, School of Mathematics and Physics, Queen’s University Belfast, Belfast BT7 1NN, U.K.
Daniel Dundas
Affiliation:
Atomistic Simulation Centre, School of Mathematics and Physics, Queen’s University Belfast, Belfast BT7 1NN, U.K.
Get access

Abstract

Dynamical effects of non-conservative forces in long, defect free atomic wires are investigated. Current flow through these wires is simulated and we find that during the initial transient, the kinetic energies of the ions are contained in a small number of phonon modes, closely clustered in frequency. These phonon modes correspond to the waterwheel modes determined from preliminary static calculations. The static calculations allow one to predict the appearance of non-conservative effects in advance of the more expensive real-time simulations. The ion kinetic energy redistributes across the band as non-conservative forces reach a steady state with electronic frictional forces. The typical ion kinetic energy is found to decrease with system length, increase with atomic mass, and its dependence on bias, mass and length is supported with a pen and paper model. This paper highlights the importance of non-conservative forces in current carrying devices and provides criteria for the design of stable atomic wires.

Type
Articles
Copyright
Copyright © Materials Research Society 2015 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Sorbello, R. S., Solid State Phys. 51, 159 (1997).CrossRefGoogle Scholar
Di Ventra, M., Pantelides, S. T., and Lang, N. D., Phys. Rev. Lett. 88, 046801 (2002).CrossRefGoogle Scholar
Dundas, D., McEniry, E. J., and Todorov, T. N., Nat. Nanotech. 4, 99 (2009).CrossRefGoogle Scholar
, J-T., Brandbyge, M., and Hedegård, P., Nano. Lett. 10, 1657 (2010).CrossRefGoogle Scholar
Bode, N., Kusminskiy, S. V., Egger, R., and von Oppen, F., Phys. Rev. Lett. 107, 036804 (2011).CrossRefGoogle Scholar
Tsutsui, M., Taniguchi, M., and Kawai, T., Nano. Lett. 8, 3293 (2008).CrossRefGoogle Scholar
Tierney, H. L., Murphy, C. J., Jewell, A. D., Baber, A. E., Isk, E. V., Khodaverdian, H. Y., McGuire, A. F., Klebanov, N. and Sykes, E. C. H., Nature Nanotechnol. 6 625 (2011).CrossRefGoogle Scholar
Cunningham, B., Todorov, T. N., and Dundas, D., Phys. Rev, B 90 115430 (2014).CrossRefGoogle Scholar
Todorov, T. N., J. Phys.: Condens. Matter 14, 3049 (2002).Google Scholar
Sutton, A. P., Todorov, T. N., Cawkwell, M. J., and Hoekstra, J., Philos. Mag. A 81, 1883 (2001).CrossRefGoogle Scholar
Sutton, A. P., Electronic Structure of Materials, Oxford University Press , 1993 Google Scholar
McEniry, E. J., Bowler, D. R., Dundas, D., Horsfield, A. P., S´anchez, C. G., and Todorov, T. N., J. Phys.: Condens. Matter 19, 196201 (2007).Google Scholar
, J-T., Christensen, R. B., Wang, J-S., Hedegård, P., Brandbyge, M., arXiv:1409.4047.Google Scholar
Todorov, T. N., Phys. Rev. B 54, 5801 (1996).CrossRefGoogle Scholar