Published online by Cambridge University Press: 01 February 2011
Spatially ordered patterns result under ns laser-induced dewetting of nanoscopic metallic films like Co and Ag on inert substrates like SiO2. In both cases, the observed ordering length scale is due to thin film hydrodynamic instability with spinodal-like character. However, the morphological pathway during dewetting is different for the two metals: occurring through development of bicontinuous structures in the case of Ag and by progression of cellular networks for Co. Dewetting in bilayer structures of Ag and Co on SiO2 show that the morphology evolution is dictated by the thicker of the two films in the bilayer structure. We applied linear stability analysis to predict the length scales in single and bilayer metal film. The experimental observations are in good agreement with theoretical predictions from the analysis. An important result was that the length scales for the bilayer film were significantly smaller than a single layer of the same thickness suggesting that further control of patterning length scales may be achieved through multilayer dewetting.
To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Find out more about the Kindle Personal Document Service.
To save this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Dropbox account. Find out more about saving content to Dropbox.
To save this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Google Drive account. Find out more about saving content to Google Drive.