Hostname: page-component-745bb68f8f-b6zl4 Total loading time: 0 Render date: 2025-01-27T00:37:10.870Z Has data issue: false hasContentIssue false

Kinetic Roughening of Multilayer Ag/Ag(100) Films: Complex Temperature-Dependence in a Simple System

Published online by Cambridge University Press:  10 February 2011

C.R. Stoldt
Affiliation:
Departments of Chemistry, Mathematics, and Ames Laboratory, Iowa State University, Ames, IA 50011
K.J. Caspersen
Affiliation:
Departments of Chemistry, Mathematics, and Ames Laboratory, Iowa State University, Ames, IA 50011
M.C. Bartelt
Affiliation:
Sandia National Laboratories, Livermore, CA 94550
C.J. Jenks
Affiliation:
Departments of Chemistry, Mathematics, and Ames Laboratory, Iowa State University, Ames, IA 50011
J.W. Evans
Affiliation:
Departments of Chemistry, Mathematics, and Ames Laboratory, Iowa State University, Ames, IA 50011
P.A. Thiel
Affiliation:
Departments of Chemistry, Mathematics, and Ames Laboratory, Iowa State University, Ames, IA 50011
Get access

Abstract

Metal(100) homoepitaxial systems constitute perhaps the simplest class of systems in which to study thin film growth. Yet, our Variable-Temperature Scanning Tunneling Microscopy (VTSTM) analysis of Ag/Ag(100) homoepitaxy reveals that the variation of roughness with temperature is extraordinarily complex. As the deposition temperature is reduced from 300K to 50K, the roughness of 25 monolayer films first increases, then decreases, and then increases again. Furthermore, a transition from mound formation to self-affine (semi-fractal) growth occurs at around 135K. We postulate that the following the atomistic mechanisms underly this behavior: the existence of a small step-edge barrier inhibiting diffusive downward transport; “downward funneling” of atoms deposited at step edges and microprotrusions towards lower four-fold hollow adsorption sites; and statistically significant deviations from “complete” downward funneling at lower temperatures, where deposited atoms instead become trapped on the sides of (the more prevalent) small steep microprotrusions. To support these postulates, we employ kinetic Monte Carlo simulations to show that atomistic (lattice-gas) models for epitaxial growth, which incorporate these mechanisms, reproduce the experimental data quantitatively.

Type
Research Article
Copyright
Copyright © Materials Research Society 2000

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1 Morphological Organization in Epitaxial Growth and Removal, edited by Zhang, Z. and Lagally, M.G. (World Scientific, Singapore, 1998).Google Scholar
2 Ekinci, K.L. and Valles, J.M., Phys. Rev. B 58, 7347 (1998); Magnetism on a Microscopic Scale, MRS Bulletin 20, no. 10 (1995).Google Scholar
3 Barabasi, A.-L. and Stanley, H.E., Fractal Concepts in Surface Growth (University Press, Cambridge, 1995).Google Scholar
4 Kunkel, R., Poelsema, B., Verheij, L.K., and Comsa, G., Phys. Rev. Lett. 65, 733 (1990).Google Scholar
5 Tsui, F., Wellman, J., Uher, C., and Clarke, R., Phys. Rev. Lett. 76, 3164 (1996).Google Scholar
6 Egelhoff, W.F. and Jacob, I., Phys. Rev. Lett. 62, 921 (1989).Google Scholar
7 Flynn-Sanders, D.K., Evans, J.W., and Thiel, P.A., Surf. Sci. 289, 77 (1993); J. Vac. Sci. Technol. A 7, 2162 (1989).Google Scholar
8 Elliot, W.C.. Miceli, P.F., Tse, T., and Stephens, P.W., Phys. Rev. B 54, 17938 (1996).Google Scholar
9 Ernst, H.-J., Fabre, F., Folkerts, R., and Lapujoulade, J., Phys. Rev. Lett. 72, 112 (1994).Google Scholar
10 Stroscio, J.A., Pierce, D.T., Stiles, M.D., Zangwill, A., and Sander, L.M., Phys. Rev. Lett. 75, 4246 (1995).Google Scholar
11 Bartelt, M.C. and Evans, J.W., Phys. Rev. Lett. 75, 4250 (1995); in Evolution of Epitaxial Structure and Morphology, edited by A. Zangwill, D. Jesson, D. Chambliss, and R. Clarke (Mater. Res. Soc. Proc. 399, Pittsburgh, PA, 1996), p. 89–94.Google Scholar
12 Stoldt, C.R., Caspersen, K.J., Bartelt, M.C., Jenks, C.J., Evans, J.W., and Thiel, P.A., Phys. Rev. Lett., 85, in press (2000).Google Scholar
13 Caspersen, K.J., Stoldt, C.R., Thiel, P.A., and Evans, J.W., in Recent Developments in Oxide and Metal Epitaxy - Theory and Experiment, edited by Yeadon, M., Chiang, S., Farrow, R.F.C., Evans, J.W., and 0. Auciello (Mater. Res. Soc. Proc. 619, Pittsburgh, PA 2000).Google Scholar
14 Murty, M.V.R. and Cooper, B.H., Phys. Rev. Lett. 83, 352 (1999); J.G. Amar and F. Family, ibid, 77, 4584 (1996).Google Scholar
15 Villain, J., J. Phys. I (France) 1, 19 (1991).Google Scholar
16 Zhang, C.-M., Bartelt, M.C., Wen, J.-M., Jenks, C.J., Evans, J.W., and Thiel, P.A., Surf. Sci. 406, 178 (1998).Google Scholar
17 Evans, J.W., Sanders, D.E., Thiel, P.A., and DePristo, A.E., Phys. Rev. B 41, 5410 (1990); J.W. Evans, ibid, 43, 3897 (1991).Google Scholar
18 Bartelt, M.C. and Evans, J.W., Surf. Sci. 423, 189 (1999).Google Scholar
19 Evans, J.W. and Sanders, D.E., in The Structure of Surfaces III, edited by Tong, S.Y., Hove, M.A. van, Takayanagi, K., and Xie, X.D. (Springer Series in Surface Sciences 24, Berlin, 1991), pp. 3843.Google Scholar
20 Kelchner, C.L. and DePristo, A.E., Surf. Sci. 393, 72 (1997).Google Scholar
21 Bardotti, L., Stoldt, C.R., Jenks, C.J., Bartelt, M.C., Evans, J.W., and Thiel, P.A., Phys. Rev. B 57, 12544 (1998).Google Scholar
22 Yu, B.D. and Scheffler, M., Phys. Rev. Lett. 77, 1095 (1996).Google Scholar
23 Stoldt, C.R., Cadilhe, A.M., Jenks, C.J., Wen, J.-M., Evans, J.W., and Thiel, P.A., Phys. Rev. Lett. 81, 2950 (1998).Google Scholar
24 Kurpick, U. and Rahman, T.S., Phys. Rev. B 57, 2482 (1998); J. Merikoski, I. Vattulainen, J. Heinonen and T. Ala-Nissila, Surf. Sci. 387, 167 (1997).Google Scholar
25 Caspersen, K.J., Stoldt, C.R., Bartelt, M.C., Thiel, P.A., and Evans, J.W., Phys. Rev. B, to be submitted (2000).Google Scholar