Hostname: page-component-745bb68f8f-5r2nc Total loading time: 0 Render date: 2025-01-27T02:47:32.225Z Has data issue: false hasContentIssue false

Ion Transport and Storage in Ionic Polymer Bending Actuators

Published online by Cambridge University Press:  28 March 2011

Jun-Hong Lin
Affiliation:
Department of Materials Science and Engineering, The Penn State University, PA16801, U.S.A.
Yang Liu
Affiliation:
Department of Electrical Engineering, The Penn State University, PA16801, U.S.A.
Gokhan Hatipoglu
Affiliation:
Department of Electrical Engineering, The Penn State University, PA16801, U.S.A.
Qiming Zhang
Affiliation:
Department of Materials Science and Engineering, The Penn State University, PA16801, U.S.A. Department of Electrical Engineering, The Penn State University, PA16801, U.S.A.
Get access

Abstract

The actuation of ionic polymer actuators is mainly caused by the ion transport and excess ions storage in the membrane and electrodes. To quantify the charge transport behavior, a time domain method based on Poisson-Nernst-Planck equations was applied. The time domain transient current in response to a step voltage can provide insights on the charge transport and storage behaviors in the membranes. In this study, we investigate the charge transport behavior of Aquivion ionomer with different uptakes of 1-ethyl-3-methylimidazolium trifluoromethanesulfonate (EMI-Tf). A critical uptake and voltage independent of charge transport behavior were observed. The results also show that bending actuations of the Aquivion membrane with 40wt% EMI-Tf is much larger than that of Nafion, indicating that the shorter flexible side chain ionomer possesses a better electromechanical coupling between the excess ions and the membrane backbones, while not affect the actuation speed.

Type
Research Article
Copyright
Copyright © Materials Research Society 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Lu, W, Fadeev, AG, Qi, BH, Smela, E, Mattes, BR, Ding, J, and Forsyth, M. Science 2002;297(5583):983987.Google Scholar
2. McEwen, AB, Ngo, HL, LeCompte, K, and Goldman, JL. Journal of the Electrochemical Society 1999;146(5):16871695.Google Scholar
3. Ue, M, Takeda, M, Toriumi, A, Kominato, A, Hagiwara, R, and Ito, Y. Journal of the Electrochemical Society 2003;150(4):A499A502 Google Scholar
4. Galinski, M, Lewandowski, A, and Stepniak, I. Electrochimica Acta 2006;51(26):55675580.Google Scholar
5. Ono, S, Seki, S, Hirahara, R, Tominari, Y, and Takeya, J. Applied Physics Letters 2008;92(10)Google Scholar
6. Bar-Cohen, Y and Zhang, QM. Mrs Bulletin 2008;33(3):173181.Google Scholar
7. Kim, D, Kim, KJ, and Tak, Y. Applied Physics Letters 2007;90(18)Google Scholar
8. Bennett, MD and Leo, DJ. Sensors and Actuators a-Physical 2004;115(1):7990.Google Scholar
9. Liu, Y, Liu, S, Lin, JH, and Zhang, QM. Applied Physics Letters 2010;96(22)Google Scholar
10. Liu, S, Liu, WJ, Liu, Y, Lin, JH, Zhou, X, Janik, MJ, Colby, RH, and Zhang, QM. Polymer International 2010;59(3):321328.Google Scholar
11. Akle, BJ, Leo, DJ, Hickner, MA, and McGrath, JE. Journal of Materials Science 2005;40(14):37153724.Google Scholar
12. Bennett, MD, Leo, DJ, Wilkes, GL, Beyer, FL, and Pechar, TW. Polymer 2006;47(19):67826796.Google Scholar
13. Watanabe, M, Shirai, H, and Hirai, T. Journal of Applied Physics 2001;90(12):63166320.Google Scholar
14. Watanabe, M, Shirai, H, and Hirai, T. Journal of Applied Physics 2002;92(8):46314637 Google Scholar
15. Mauritz, KA and Moore, RB. Chemical Reviews 2004;104(10):45354585.Google Scholar
16. Hsu, WY and Gierke, TD. Journal of Membrane Science 1983;13(3):307326.Google Scholar
17. Ghielmi, A, Vaccarono, P, and Arcella, V. Journal of Power Sources 2005;145(2):108 Google Scholar
18. Jalani, NH and Datta, R. Journal of Membrane Science 2005;264(1-2):167175 Google Scholar
19. Halim, J, Buchi, FN, Haas, O, Stamm, M, and Scherer, GG. Electrochimica Acta 1994;39(8-9):1303 Google Scholar
20. Kreuer, KD, Schuster, M, Paddison, SJ, and Maier, J. Journal of Power Sources 2008;178(2):499509 Google Scholar
21. Bazant, MZ, Thornton, K, and Ajdari, A. Physical Review E 2004;70(2).Google Scholar
22. Kilic, MS, Bazant, MZ, and Ajdari, A. Physical Review E 2007;75(2).Google Scholar
23. Beunis, F, Strubbe, F, Marescaux, M, Beeckman, J, Neyts, K, and Verschueren, ARM. Physical Review E 2008;78(1).Google Scholar
24. Strubbe, F, Verschueren, ARM, Schlangen, LJM, Beunis, F, and Neyts, K. Journal of Colloid and Interface Science 2006;300(1):396403.Google Scholar
25. Beunis, F, Strubbe, F, Neyts, K, and Verschueren, ARM. Applied Physics Letters 2007;90(18).Google Scholar
26. Marescaux, M, Beunis, F, Strubbe, F, Verboven, B, and Neyts, K. Physical Review E 2009;79(1)Google Scholar
27. Wakai, C, Oleinikova, A, Ott, M, and Weingartner, H Journal of Physical Chemistry B 2005;109(36):1702817030.Google Scholar
28. Serghei, A, Tress, M, Sangoro, JR, and Kremer, F. Physical Review B 2009;80(18).Google Scholar
29. Krause, C, Sangoro, JR, Iacob, C, and Kremer, F. Journal of Physical Chemistry B 2010;114(1):382386.Google Scholar
30. Lockett, V, Sedev, R, Ralston, J, Horne, M, and Rodopoulos, T. Journal of Physical Chemistry C 2008;112(19):74867495.Google Scholar
31. Klein, RJ, Zhang, SH, Dou, S, Jones, BH, Colby, RH, and Runt, J. Journal of Chemical Physics 2006;124(14).Google Scholar
32. Fragiadakis, D, Dou, S, Colby, RH, and Runt, J. Journal of Chemical Physics 2009;130(6).Google Scholar