Published online by Cambridge University Press: 11 February 2011
Arrays of mesoscopic ferroelectric PZT structures with lateral sizes from several micrometers down to below 300 nm were prepared applying nanoimprint lithography. The ferroelectric properties of the mesoscopic structures were investigated by scanning force microscopy in piezoresponse mode. The best chemical route to obtain ferroelectric structures was found to be the sol-gel method. Using Nb-doped SrTiO3 single crystals as bottom electrodes, the crystallization into the ferroelectric phase was uniform with grain sizes in the 35 nm range. The best ferroelectric properties of individual 300 nm structures were obtained if an intermediate, continuous ferroelectric layer was present on the bottom electrode.
To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Find out more about the Kindle Personal Document Service.
To save this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Dropbox account. Find out more about saving content to Dropbox.
To save this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Google Drive account. Find out more about saving content to Google Drive.