Hostname: page-component-745bb68f8f-d8cs5 Total loading time: 0 Render date: 2025-01-27T01:22:14.705Z Has data issue: false hasContentIssue false

Investigation on Nanorod TCO Light-trapping for a-Si:H Solar Cells in Superstrate Configuration

Published online by Cambridge University Press:  25 May 2012

Martin Vehse
Affiliation:
NEXT ENERGY, EWE Research Center for Energy Technology at Carl von Ossietzky University, 26129 Oldenburg, Germany
Stefan Geißendörfer
Affiliation:
NEXT ENERGY, EWE Research Center for Energy Technology at Carl von Ossietzky University, 26129 Oldenburg, Germany
Tobias Voss
Affiliation:
University of Bremen, Institute of Solid State Physics, Semiconductor Optics Group, 28334 Bremen, Germany
Jan-Peter Richters
Affiliation:
University of Bremen, Institute of Solid State Physics, Semiconductor Optics Group, 28334 Bremen, Germany
Benedikt Schumacher
Affiliation:
NEXT ENERGY, EWE Research Center for Energy Technology at Carl von Ossietzky University, 26129 Oldenburg, Germany
Karsten von Maydell
Affiliation:
NEXT ENERGY, EWE Research Center for Energy Technology at Carl von Ossietzky University, 26129 Oldenburg, Germany
Carsten Agert
Affiliation:
NEXT ENERGY, EWE Research Center for Energy Technology at Carl von Ossietzky University, 26129 Oldenburg, Germany
Get access

Abstract

Light trapping due to rough transparent conductive oxide (TCO) surfaces is a common and industrially applied technique in thin film silicon solar cells. In this study, we demonstrate a novel light trapping solution using electrochemically deposited, highly doped zinc oxide (ZnO) nanorod arrays which goes beyond standard light management concepts. The n-doped ZnO rods enable the application as front electrode in superstrate configuration. We explain our experimental results by multidimensional solar cell simulations and show how the nanorod array geometry influences the cell performance. The requirement is demonstrated to choose an appropriate average nanorod distance which strongly influences the electrical cell characteristics. The results clearly outline the potential of TCO nanorod technology for enhanced light trapping.

Type
Articles
Copyright
Copyright © Materials Research Society 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Klaver, A. and van Swaaij, R., Solar Energy Materials and Solar Cells 92, 5060, (2008).CrossRefGoogle Scholar
Staebler, D. L. and Wronski, C. R., Journal of Applied Physics 51, 32623268 (1980).CrossRefGoogle Scholar
Sai, H., Jia, H., and Kondo, M., Journal of Applied Physics 108, 044505 (2010).Google Scholar
Vanecek, M., Poruba, A., Remes, Z., Holovsky, J., Purkrt, A., Babchenko, O., Hruska, K., Meier, J., and Kroll, U., Proceedings of the 24th European Photovoltaic Solar Energy Conference (2009), pp. 22862289.Google Scholar
Vanecek, M., Neykova, N., Babchenko, O., Purkrt, A., Poruba, A., Remes, Z., Holovsky, J., Hruska, K., Meier, J., and Kroll, U., Proceedings of the 25th European Photovoltaic Solar Energy Conference (2010), pp. 27632766.Google Scholar
Battaglia, C., Escarre, J., Söderström, K., Charriere, M., Despeisse, M., Haug, F.-J., and Ballif, C., Nature Photonics 5, 535538 (2011).CrossRefGoogle Scholar
Zhu, J., Hsu, C.-M., Yu, Z., Fan, S., and Cui, Y., Nano Letters 10, 19791984 (2010).CrossRefGoogle Scholar
Ferry, V. E., Verschuuren, M. A., Lare, M. C. v., Schropp, R. E. I., Atwater, H. A., and Polman, A., Nano Letters 11, 42394245 (2011).CrossRefGoogle Scholar
Atwater, H. A. and Polman, A., Nature Materials 9, 205213 (2010).CrossRefGoogle Scholar
Eminian, C., Haug, F.-J., Cubero, O., Niquille, X., and Ballif, C., Progress in Photovoltaics: Research and Applications 19, 260265 (2011).CrossRefGoogle Scholar
Schiff, E. A., Journal of Applied Physics 110, 104501 (2011).CrossRefGoogle Scholar
Kuang, Y., van der Werf, K. H. M., Houweling, Z. S., and Schropp, R. E. I., Applied Physics Letters 98, 113111 (2011).CrossRefGoogle Scholar
El-Shaer, A., Dev, A., Richters, J.-P., Waldvogel, S. R., Waltermann, J., Schade, W., and Voss, T. physica status solidi (b) 247, 15641567 (2010).CrossRefGoogle Scholar
Tena-Zaera, R., Elias, J., Levy-Clement, C., Bekeny, C., Voss, T., Mora-Sero, I., and Bisquert, J. The Journal of Physical Chemistry C 112, 1631816323 (2008).CrossRefGoogle Scholar
Sakai, H., Yoshida, T., Hama, T., and Ichikawa, Y., Jap. Journal of Applied Physics 4, 630635 (1990).CrossRefGoogle Scholar
Tsai, C. C., Knights, J. C., Chang, G., and Wacker, B., Journal of Applied Physics 59, 29983001 (1986).CrossRefGoogle Scholar
Geißendörfer, S., Lacombe, J., Sergeev, O., von Maydell, K., and Agert, C., Proceedings of the 26th European Photovoltaic Solar Energy Conference (2011), pp. 26672670.Google Scholar