Hostname: page-component-745bb68f8f-s22k5 Total loading time: 0 Render date: 2025-01-12T02:55:22.909Z Has data issue: false hasContentIssue false

Investigation of the thermoelectric properties of the PbTe-SrTe system

Published online by Cambridge University Press:  01 February 2011

Kanishka Biswas
Affiliation:
biswas.kanishka@gmail.com, Northwestern University, Department of Chemistry, Evanston, Illinois, United States
Jiaqing He
Affiliation:
jiaqing-he@northwestern.edu, Northwestern University, Department of Chemistry, Evanston, Illinois, United States
Qichun Zhang
Affiliation:
qczhang@ntu.edu.sg, Northwestern University, Department of Chemistry, Evanston, Illinois, United States
Guoyu Wang
Affiliation:
gywang@umich.edu, University of Michigan, Department of Physics, Ann Arbor, Michigan, United States
Ctirad Uher
Affiliation:
cuher@umich.edu, University of Michigan, Department of Physics, Ann Arbor, Michigan, United States
Vinayak P Dravid
Affiliation:
v-dravid@northwestern.edu, Northwestern University, Materials Science and Engineering, Evanston, Illinois, United States
Mercouri Kanatzidis
Affiliation:
m-kanatzidis@northwestern.edu, Northwestern University, Department of Chemistry, Evanston, Illinois, United States
Get access

Abstract

PbTe-based materials are promising for efficient heat energy to electricity conversion. We present studies of the thermoelectric properties of the PbTe-SrTe system. X-ray diffraction patterns reveal that all the samples crystallize in the rock salt structure without noticeable secondary phase. Na2Te doping of the PbTe-SrTe materials resulting in a positive sign Hall coefficient indicating p-type conduction. Lattice thermal conductivity is significantly decreased with the insertion of SrTe in PbTe lattice. The ZT ∼ 1.3 of these materials is derived from their very low thermal conductivities and reasonably high power factor at 800 K.

Type
Research Article
Copyright
Copyright © Materials Research Society 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1 Chen, G., Dresselhaus, M. S. Dresselhaus, G. Fleurial, J. P. and Caillat, T. Int. Matter. Rev. 48, 4566 (2003).Google Scholar
2 Rowe, D. M. CRC Handbook of Thermoelectrics: Macro to Nano (CRC Press/Taylor & Francis, Boca Raton, 2006).Google Scholar
3 Snyder, J. G. and Toberer, E. S. Nature Mater. 7, 105114 (2008).Google Scholar
4 Sootsman, J. Chung, D. Y. and Kanatzidis, M. G. Angew. Chem. Int. Ed. 48, 86168639 (2009).Google Scholar
5 Kanatzidis, M. G. Chem. Mater. 22, 648659 (2010).Google Scholar
6 Heremans, J. P. Jovovic, V. Toberer, E. S. Saramat, A. Kurosaki, K. Charoenphakdee, A. Yamanaka, S. and Snyder, G. J. Science 321, 554557 (2008).Google Scholar
7 Ahmad, S. Hoang, K. and Mahanti, S. D. Phys. Rev. Lett. 96, 56403 (14) (2006).Google Scholar
8 Sootsman, J. R. Kong, H. Uher, C. D'Angelo, J. J., Wu, C. I. Hogan, T. P. Caillat, T. and Kanatzidis, M. G. Angew. Chem. Int. Ed. 47, 86188622 (2008).Google Scholar
9 Hsu, K. F. Loo, S. Guo, F. Chen, W. Dyck, J. S. Uher, C. Hogan, T. Polychroniadis, E. K. and Kanatzidis, M. G. Science 303, 818821 (2004).Google Scholar
10 Androulakis, J. Hsu, K. F. Pcionek, R. Kong, H. Uher, C. D'angelo, J. J., Downey, A. Hogan, T. and Kanatzidis, M. G. Adv. Mater. 18, 11701173 (2006).10.1002/adma.200502770Google Scholar
11 Poudeu, P. F. P. D'Angelo, J., Downey, A. D. Short, J. L. Hogan, T. P. and Kanatzidis, M. G. Angew. Chem. Int. Ed. 45, 38353839 (2006).Google Scholar
12 Poudeu, P. F. P. Guéguen, A., Wu, C. I. Hogan, T. Kanatzidis, M. G. Chem. Mater. 22, 10461053 (2010).Google Scholar
13 Androulakis, J. Lin, C. H. Kong, H. J. Uher, C. Wu, C. I. Hogan, T. Cook, B. A. Caillat, T. Paraskevopoulos, K. M. and Kanatzidis, M. G. J. Am. Chem. Soc. 129, 97809788 (2007).Google Scholar
14 Poudel, B. Hao, Q. Ma, Y. Lan, Y. Minnich, A. Yu, B. Yan, X. Wang, D. Muto, A. Vashaee, D. Chen, X. Liu, J. Dresselhaus, M. S. Chen, G. and Ren, Z. Science 320, 634638 (2008)Google Scholar
15 Allgaier, R. S. Houston, B. B. Jr. , J. Appl. Phys. 37, 302-309 (1966).Google Scholar
16 Partin, D. L. Thrush, C. M. Clemens, B. M. J. Vac. Sci. Technol. B5, 686689 (1987).Google Scholar
17 Ravich, Y. I. Efimova, B. A. Smirnov, I. A. Semiconducting Lead Chalcogenides (Plenum, New York, vol 5, 1970).10.1007/978-1-4684-8607-0Google Scholar