Hostname: page-component-745bb68f8f-cphqk Total loading time: 0 Render date: 2025-01-12T02:41:28.102Z Has data issue: false hasContentIssue false

Investigation of Nitrogen Induced closely coupled Sb based Quantum Dots for Infrared Sensors Application

Published online by Cambridge University Press:  01 February 2011

Seongsin M Kim
Affiliation:
seongsin@snow.stanford.edu, Stanford University, EE, 420 Via palou, CISX 310, stanford, CA, 94305, United States
Fariba Hatami
Affiliation:
hatami@physik.hu-berlin.de, Stanford University, Stanford, CA, 94305, United States
Homan B Yuen
Affiliation:
hyuen@snow.stanford.eud, Stanford University, Stanford, CA, 94305, United States
James S Harris
Affiliation:
harris@snow.stanford.edu, Stanford University, Stanford, CA, 94305, United States
Get access

Abstract

We report the growth and structural properties of InSb and InSb:N quantum dots on InAs and GaAs substrates. Strain induced, self-assembled quantum dots are grown using solid-source molecular beam epitaxy. For improved growth control, we developed a growth technique similar to atomic layer epitaxial methods. InSb and InSb:N multiple quantum dots formed on both InAs and GaAs. We explain the formation of multiple quantum dots by the anisotropic distribution of strain energy within the quantum dot, the long adatom lifetime during atomic layer epitaxy, and the low bond energy of InSb. Nitrogen incorporation during formation of quantum dots changes surface energy barrier and causes anisotropic distribution of strain energy, results in formation of closely coupled multiple quantum dots in <110> orientation. We obtained mid infrared luminescence around 3.6 μm from InNSb QDs grown on InAs substrate, where it exhibits relatively low efficiencies of nitrogen incorporation compared to the quantum well structure.

Type
Research Article
Copyright
Copyright © Materials Research Society 2007

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

[1] Caroff, P., Paranthoen, C., Platz, C., Dehaese, O., Folliot, H., Bertru, N., Labbe, C., Piron, R., Homeyer, E., Le Corre, A., and Loualiche, S., Appl. Phys. Lett. 87, 243107 (2005).Google Scholar
[2] Yamamoto, N., Akahane, K., Gozu, S., and Ohtani, N., Appl. Phys. Lett. 86, 203118 (2005).Google Scholar
[3] Kim, S. M., Wang, Y., Keever, M., and Harris, J.S., IEEE Photonics Tech. Lett. 16, 377 (2004).Google Scholar
[4] Hatami, F. et al., Appl. Phys. Lett. 67, 656 (1995).Google Scholar
[5] Moison, J.M., Houzay, F., Barthe, F., Leprince, L., Andre, E., and Vatel, O., Appl. Phys. Lett. 64, 196 (1994).Google Scholar
[6] Hatami, F., Schrottke, L., and Masselink, W.T., Appl. Phys. Lett. 78, 2163 (2001).Google Scholar
[7] Weyers, M., Sato, M., and Ando, H., Jpn. J. Appl. Phys., Part 2, 31, L853 (1992).Google Scholar
[8] Kondow, M., Uomi, K., Niwa, A., Kitatani, T., Watahiki, S., and Yazawa, Y., Jpn. J. Appl. Phys., Part 1, 35, 1273 (1996).Google Scholar
[9] Bellaiche, L., Appl. Phys. Lett. 75, 2578 (1999).Google Scholar
[10] Yuen, H.B., Kim, S.M., Hatami, F., and Harris, J.S., Appl. Phys. Lett. 89, 121921 (2006)Google Scholar
[11] Zinke-Allmang, M., Feldman, L.C., and Grabow, M.H., Surf. Sci. Rep. 16, 377 (1992).Google Scholar