Published online by Cambridge University Press: 10 February 2011
Interdiffusion of Si/Si0.85Ge0.15 heterojunctions subjected to annealing in inert and oxidizing ambients was investigated as a function of temperature (900 to 1200 °C) and time, allowing comparison between intrinsic diffusion and diffusion under interstitial injection. The Ge diffusivity was extracted using the process simulation program FLOOPS. A time-independent diffusivity was observed for all temperatures. The calculated Ge diffusivity in oxidizing ambient was comparable to that in inert ambient indicating that the interstitial concentration plays a minimal role in interdiffusion. A fractional interstitial component, f1, equal to 0.10 is estimated for annealing temperatures in the range 900 to 1100 °C, while f1 increases to approximately 0.17 at 1200 °C. This may indicate a change in diffusion mechanism at a temperature greater than 1100 °C
To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Find out more about the Kindle Personal Document Service.
To save this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Dropbox account. Find out more about saving content to Dropbox.
To save this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Google Drive account. Find out more about saving content to Google Drive.