Hostname: page-component-745bb68f8f-grxwn Total loading time: 0 Render date: 2025-01-12T05:19:01.014Z Has data issue: false hasContentIssue false

In-plane Thermal Conductivity Determination in Silicon on Insulator (SOI) Structures Through Thermoreflectance Measurements

Published online by Cambridge University Press:  01 February 2011

Max S Aubain
Affiliation:
maubain@ucsd.edu, University of California-San Diego, Mechanical Engineering Department, Materials Science and Engineering Program, La Jolla, California, United States
Prabhakar Bandaru
Affiliation:
pbandaru@ucsd.edu, University of California-San Diego, Mechanical Engineering Department, Materials Science and Engineering Program, La Jolla, California, United States
Get access

Abstract

Heat dissipation in Silicon-On-Insulator (SOI) based microdevices is hindered in the silicon device layer by the low thermal conductivity of the neighboring oxide and reduced in-plane thermal conductivity in very thin layers. This work shows that the in-plane thermal conductivity of a 260 nm thick device layers in SOI substrates can be characterized by measuring the temperature distributions induced by AC joule heating through microfabricated heaters by a scanning thermoreflectance technique. These data were fitted to numerical solutions of the heat conduction equation calculated using COMSOL® Multiphysics modeling software, suggesting the in-plane thermal conductivity of the device layer is reduced to 90±10 W/(m.K), which is consistent with phonon boundary scattering theory predictions.

Type
Research Article
Copyright
Copyright © Materials Research Society 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1 Asheghi, M. Leung, Y.K. Wong, S.S. and Goodson, K.E. Appl. Phys. Lett. 71, 1798 (1997).Google Scholar
2 Holland, M.G. Physical Review 132 2461 (1963).Google Scholar
3 Sondheimer, E.H. Advances in Physics 11 (1952).Google Scholar
4 Asheghi, M. Touzelbaev, M.N. Goodson, K.E. Leung, Y.K. and Wong, S.S. J. Heat Trans. 120 30 (1998).Google Scholar
5 Ju, Y.S. K. Kurabayashi and Goodson, K.E. Thin Solid Films 339, 160 (1999).10.1016/S0040-6090(98)01328-5Google Scholar
6 Ju, Y.S. and Goodson, K.E. Appl. Phys. Lett. 74 3005 (1999).Google Scholar
7 Mazumder, S. and Majumdar, A. J. Heat Trans. 123 749759 (2001).Google Scholar
8 Narumanchi, S. V. J. Murthy, J. Y. and Amon, C. H. J. Heat Trans. 126 946 (2004).Google Scholar
9 Liu, W. and Asheghi, M. J. Heat Trans. 128 75 (2006).Google Scholar
10 Tessier, G. Jerosolimski, G. Holé, S., Fournier, D. Filloy, C. Rev. Sci. Instrum. 74 495 (2003)Google Scholar
11 Christofferson, J. Maize, K. Ezzahri, Y. Shabani, J. Wang, X. and Shakouri, A. Journal of Electronic Packaging 130 041101 (2008).Google Scholar
12 Christofferson, J. and Shakouri, A. Rev. Sci. Instrum. 76 024903 (2005).Google Scholar
13 Grauby, S. Forget, B.C. Holé, S. and Fournier, D. Rev. Sci. Instrum. 70 3603 (1999).10.1063/1.1149966Google Scholar
14 Cahill, D.G. Rev. Sci. Instrum. 61 802 (1989).Google Scholar
15 Cahill, D.G. Ford, W.K. Goodson, K.E. Mahan, G.D. Majumdar, A. Maris, H.J. Merlin, R. and Phillpot, S.R. J. Appl. Phys. 93 793 (2003).Google Scholar
16 Chen, G. J. Heat Trans. 119 220 (1997).Google Scholar
17 Brockhouse, B.N. Phys. Rev. Lett. 2 256 (1959).Google Scholar