Hostname: page-component-745bb68f8f-d8cs5 Total loading time: 0 Render date: 2025-01-26T03:03:06.876Z Has data issue: false hasContentIssue false

In-Plane Anisotropy In CoCr(Ta,Pt)/Cr Films Deposited onto Substrates with Controlled Topography

Published online by Cambridge University Press:  10 February 2011

D.J. Twisselmann
Affiliation:
Department of Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139
B.T. Adekor
Affiliation:
Department of Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139
M. Farhoud
Affiliation:
Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, Cambridge, MA 02139
Henry I. Smith
Affiliation:
Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, Cambridge, MA 02139
P.C. Dorsey
Affiliation:
Komag Inc, 1704 Automation Parkway, San Jose, CA 95131
C.A. Ross
Affiliation:
Department of Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139
Get access

Abstract

In-plane magnetic anisotropy can be induced in Cr-underlayer/Co-alloy thin films by grooves or scratches in the substrate. To quantify this effect, silica substrates have been prepared with large areas of submicron grooves using interferometric lithography. The growth of Cr films and Cr/Co-alloy bilayer films on these substrates has been investigated, and in-plane magnetic anisotropy has been observed.

Type
Research Article
Copyright
Copyright © Materials Research Society 1998

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1 Haines, W.G., J. Appl. Phys. 61 p3497 (1987).Google Scholar
2 Simpson, E.M., Narayan, P.B., Swami, G.T.K. and Chao, J.L., IEEE Trans. Magn. 23 p3405 (1987).Google Scholar
3 Kim, M.R., Guruswamy, S. and Johnson, K.E., J. Appl. Phys. 74 p4643 (1993).10.1063/1.354384Google Scholar
4 Nishikawa, R., Hikosaka, T., Igarashi, K. and Kanamaru, M., IEEE Trans. Magn. 25 p890 (1989).Google Scholar
5 Doerner, M.F., Wang, P.W., Mirzamaani, S.M., Parker, D.S. and Wall, A.C., Proc. Mater. Res. Soc. 232 p27 (1991).Google Scholar
6 Kawamoto, A. and Hikami, F., J. Appl. Phys. 69 p5151 (1991).Google Scholar
7 Bain, J.A., Clemens, B.M., Brennan, S.M. and Kataoka, H., IEEE Trans. Magn. 29 p300 (1993).Google Scholar
8 Johnson, K.E., Mirzamaani, M. and Doerner, M.F., IEEE Trans. Magn. 31 p2721 (1995).Google Scholar
9 Ross, C.A., Schabes, M.E., Ranjan, R., Bertero, G. and Chen, T., J. Appl. Phys. 79 p5342 (1996).10.1063/1.361914Google Scholar
10 Hirose, T., Teranishi, H., Ohsawa, M., Ueda, A., Ishiwata, O., Ataka, T., Ozawa, K., Komiya, S. and Iida, A., IEEE Trans. Magn. 33 p2971 (1997).Google Scholar
11 Ohno, T., Shiroishi, Y., Hishiyama, S. and Matsuda, Y., IEEE. Trans. Magn. 23 p2809 (1987).Google Scholar
12 Kataoka, H., Bain, J.A., Brennan, S.M. and Clemens, B.M., J. Appl. Phys. 73 p7591 (1993).Google Scholar
13 Nolan, T.P., Ph.D. thesis, Dept. Materials Science and Engineering, Stanford University (1994).Google Scholar
14 Zhao, Y. and Bertram, H.N., J. Appl. Phys. 77 p6411 (1995).Google Scholar
15 Miles, J. and Middleton, J., IEEE Trans. Magn. 31 p2770 (1995).Google Scholar
16 Morales, M.P., O'Grady, K., Zhang, B., Bennett, W.R. and Rauch, G.C., IEEE Trans. Magn. 32 p3595 (1996).Google Scholar
17 Teng, E. and Ballard, N., IEEE Trans. Magn. 22 p579 (1986).Google Scholar
18 Mirzamaani, M., Johnson, K.E., Edmonson, D., Ivett, P. and Russak, M., J. Appl. Phys. 67 p4695 (1990).Google Scholar
19 Kawanabe, T., Park, J.G. and Naoe, M., Mat. Sci. Eng. A134 p1305 (1991).Google Scholar
20 Kawanabe, T., Park, J.G. and Naoe, M., IEEE Trans. Magn. 27 p5031 (1991).Google Scholar
21 Schattenburg, M.L., Aucoin, R.J. and Fleming, R.C.. J. Vac. Sci. Tech. B13 p3007 (1995).Google Scholar
22 Savas, T.A., Schattenburg, M.L., Carter, J.M. and Smith, H.I., J. Vac. Sci. Tec. B14 p4167 (1996).Google Scholar
23 Smith, H.I., “Submicron and Nanometer Structures Technology”, Nanostructures Press, Sudbury MA (1994).Google Scholar
24 Farhoud, M., Hwang, M., Smith, H.I., Bae, J.M., Youcef-Toumi, K. and Ross, C.A., in press, IEEE Trans. Magn. (1998).Google Scholar