Hostname: page-component-745bb68f8f-g4j75 Total loading time: 0 Render date: 2025-01-27T20:52:22.909Z Has data issue: false hasContentIssue false

Influence of Anisotropic Scattering Along the 2D-Fermi Surface on Transport Properties in an Asymmetric-Donor-Based Molecular Crystal

Published online by Cambridge University Press:  16 February 2011

Nathanael A. Fortune
Affiliation:
Physical Science Division, Electrotechnical Laboratory, 1–1–4 UMezono, Tsukuba 305, JAPAN Internet: fortune@etlrips.etl.go.jp
K. Murata
Affiliation:
Physical Science Division, Electrotechnical Laboratory, 1–1–4 UMezono, Tsukuba 305, JAPAN
G. C. Papavassjuou
Affiliation:
Theoretical and Physical Chemistry Institute, National Hellenic Research Foundation, 48, Vassileos Constantinou Avenue, Athens 116/35 Greece
D. J. Lagouvardos
Affiliation:
Theoretical and Physical Chemistry Institute, National Hellenic Research Foundation, 48, Vassileos Constantinou Avenue, Athens 116/35 Greece
J. S. Zambounis
Affiliation:
Materials Research Laboratory, CIBA-GEIGY AG, 1723 Marly 1, Switzerland
Get access

Abstract

We report our results for the temperature dependence of the Hall coefficient and in-plane resistivity for the asymmetric-donor-based quasi-2D Molecular crystal τ- (P-S,S-DMEDT-TTF)2 (AuBr2)1(AuBr2)y (y≈0.75). Using a recent “geometrical representation” of the weak-field 2D Hall conductivity developed by N.P. Ong [Phys. Rev. B 43, 193 (1991)], we model the temperature dependence of these electronic transport properties in terms of the temperature dependence of the scattering path length and its anisotropy along the 2D Fermi surface.

Type
Research Article
Copyright
Copyright © Materials Research Society 1994

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Zambounis, J.S., Pfeiffer, J., Hofherr, W., Rihs, G., Terzis, A., Delhaes, P., Papavassiliou, G.C. (unpublished).Google Scholar
2. Papavassiliou, G. C., Lagouvardos, D.J., Kakoussis, V.C., Terzis, A., Hountas, A., Hilti, B., Mayer, C., Zambounis, J.S., Pfeiffer, J., Whangbo, M-H., Ren, J. and Kang, D.B. (Mater. Res. Soc. Proc. 247, 1992) pp. 535540.CrossRefGoogle Scholar
3. Tsuji, M., J. Phys. Soc. Jpn. 13, 979 (1958).CrossRefGoogle Scholar
4. Ziman, J.M., Phys. Rev. 121, 1320 (1961).Google Scholar
5. Ong, N.P., Phys. Rev. B 43, 193 (1991).Google Scholar
6. Pippard, A.B., Magnetoresistance in Metals (Cambridge University Press, Cambridge, 1989).Google Scholar
7. Fortune, N.A., Murata, K., Papavassiliou, G.C., Lagouvardos, D.J. and Zambounis, J. S. (unpublished).Google Scholar
8. Ziman, J.M., Electrons and Phonons (Clarendon, Oxford, 1960).Google Scholar