Hostname: page-component-745bb68f8f-cphqk Total loading time: 0 Render date: 2025-01-12T01:59:10.223Z Has data issue: false hasContentIssue false

Indentation Response of Nanostructured Turfs

Published online by Cambridge University Press:  01 February 2011

A. A. Zbib
Affiliation:
azbib@wsu.edu, Washington State University, Mechanical and Materials Engineering, PO Box 642920, Pullman, WA, 99164-2920, United States
S. Dj. Mesarovic
Affiliation:
smesarovic@wsu.edu, Washington State University, Mechanical and Materials Engineering, PO Box 642920, Pullman, WA, 99164-2920, United States
D. F. Bahr
Affiliation:
dbahr@wsu.edu, Washington State University, Mechanical and Materials Engineering, PO Box 642920, Pullman, WA, 99164-2920, United States
E. T. Lilleodden
Affiliation:
Erica.Lilleodden@gkss.de, GKSS, Geesthacht, N/A, Germany
J. Jiao
Affiliation:
jiaoj@pdx.edu, Portland State University, Physics, Portland, OR, 97207-0751, United States
D. McClain
Affiliation:
dmclain@pdx.edu, Portland State University, Physics, Portland, OR, 97207-0751, United States
Get access

Abstract

When grown via chemical vapor deposition carbon nanotubes (CNTs) may take on the form of a “turf”, consisting of many CNTs with a complex interconnectedness attached to an inflexible substrate. These turfs can be formed over large areas and with a range of heights (between 1 to 100 μm), and grown on photolithographically patterned catalysts to form different aspect ratios. This study focuses on the indentation and permanent deformation of CNT assemblages under applied contact loading. Nanoindentation was conducted on CNT turfs and the properties, nominally the turf's elastic modulus and hardness, were 14.9 MPa ± 5.7 MPa and 2 MPa respectively. The onset of permanent deformation during indentation occurred at applied stresses of 2.5 MPa. The turf's collective permanent deformation under applied compressive loading was also studied. A model predicting the buckling stress of CNT turfs is also described.

Type
Research Article
Copyright
Copyright © Materials Research Society 2008

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1 Treacy, M. M. J., Ebbesen, T. W. & Gibson, J. M. Nature 381, 678 (1996).Google Scholar
2 Baughman, R. H., Cui, Ch., Zakhidov, A., Iqbal, Z., Barisci, J., Spinks, G., Wallace, G., Mazzoldi, A., De Rossi, D., Rinzler, A., Jaschinski, O., Roth, S. & Kertesz, M. Science 284, 1340 (1999).Google Scholar
3 Berber, S., Kwon, Y. amd Tomanek, D. Phys. Rev. Lett. 84, 4613 (2000).Google Scholar
4 Fan, Sh., Chapline, M. G., Franklin, N. R., Tombler, T. W., Cassell, A. M. & Dai, H. Science 283, 512 (1999).Google Scholar
5 Qi, H. J., Teo, K.B.K., Lau, K.K.S., Boyce, M.C., Milne, W.I., Robertson, J. & Gleason, K.K. J. Mech. Phys. Solids. 51, 2213 (2003)Google Scholar
6 Mesarovic, S. Dj., McCarter, C. M., Bahr, D. F., Radhakrishnan, H., Richards, R. F., Richards, C. D., McClain, D. & Jiao, J. Scripta Materialia 56, 157 (2007).Google Scholar
7 Waters, J. F., Riester, L. Jouzi, M. Guduru, P. R. & Xu, J. M.. Appl. Phys. lett. 85, 1787 (2004).Google Scholar
8 McCarter, C. M., Richards, R. F., Mesarovic, S. Dj., Richards, C. D., Bahr, D. F., McClain, D. & Jiao, J. J. Mater. Sc. 21, 7872 (2006).Google Scholar
9 Yang, D. J., Wang, S. G., Zhang, Q., Sellin, P. J. & Chen, G. Phys. Lett. A. 329, 207 (2004).Google Scholar
10 Cao, A. Dickrell, P. L., Sawyer, W. G., Ghasemi-Nejhad, M. N. & Ajayan, P. M. Science 310, 1307 (2005).Google Scholar
11 Dong, L., Jiao, J., Pan, C. and Tuggle, D. W. Appl. Phys. A 78, 914 (2004)Google Scholar
12 Oliver, W. C. & Pharr, G. M. J. Mater. Res. 7, 15641583 (1992).Google Scholar
13 Deshpande, V. S. and Fleck, N. A., J. Mech. Phys. Solids 48, 1253 (2000).Google Scholar