Hostname: page-component-745bb68f8f-kw2vx Total loading time: 0 Render date: 2025-01-12T09:30:49.196Z Has data issue: false hasContentIssue false

In Situ Synthesis and Integration of Polymer Electrolytes in Nanostructured Electrodes for Photovoltaic Applications

Published online by Cambridge University Press:  28 January 2011

Siamak Nejati
Affiliation:
Department of Chemical and Biological Engineering, Drexel University, Philadelphia, PA 19104, U.S.A.
Kenneth K. S. Lau
Affiliation:
Department of Chemical and Biological Engineering, Drexel University, Philadelphia, PA 19104, U.S.A.
Get access

Abstract

The conventional dye sensitized solar cell (DSSC) is limited by the use of a liquid electrolyte that is prone to leakage and evaporation. Efforts to replace the liquid with a solid equivalent have been met with difficulties in penetrating the mesoporous TiO2 nanostructured photoanode with liquid processing, particularly for photoanode layer thickness greater than 2 μm. Here, initiated chemical vapor deposition (iCVD) is successfully applied to directly synthesize and fill the pores of the mesoporous TiO2 network of up to 12 μm thickness with poly(2-hydroxyethyl methacrylate) (PHEMA) polymer electrolyte. Comparing with equivalent liquid electrolyte cells, DSSCs integrated with PHEMA polymer electrolyte showed consistently higher open circuit voltage, which is attributed to a decrease in electron recombination with the redox couple at the electrode-electrolyte interface.

Type
Research Article
Copyright
Copyright © Materials Research Society 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. O’Regan, B., and Grätzel, M., Nature 353, 737 (1991).Google Scholar
2. Grätzel, M., J. Photochem. Photobio. A 164, 3 (2004).Google Scholar
3. Wang, P., Zakeeruddin, S. M., Moser, J. E., Nazeeruddin, M. K., Sekiguchi, T., and Grätzel, M., Nat. Mater. 2, 402 (2003).Google Scholar
4. Matsumoto, M., Miyazaki, H., Matsuhiro, K., Kumashiro, Y., and Takaoka, Y., Solid State Ionics 89, 263 (1996).Google Scholar
5. Bach, U., Lupo, D., Comte, P., Moser, J. E., Weissortel, F., Salbeck, J., Spreitzer, H., and Grätzel, M., Nature 395, 583 (1998).Google Scholar
6. Meng, Q. B., Takahashi, K., Zhang, X. T., Sutanto, I., Rao, T. N., Sato, O., Fujishima, A., Watanabe, H., Nakamori, T., and Uragami, M., Langmuir 19, 3572 (2003).Google Scholar
7. Kruger, J., Plass, R., Grätzel, M., and Matthieu, H. J., Appl. Phys. Lett. 81, 367 (2002).Google Scholar
8. Gebeyehu, D., Brabec, C. J., and Sariciftci, N. S., Thin Solid Films 403, 271 (2002).Google Scholar
9. Saito, Y., Fukuri, N., Senadeera, R., Kitamura, T., Wada, Y., and Yanagida, S., Electrochem. Commun. 6, 71 (2004).Google Scholar
10. Cao, F., Oskam, G., and Searson, P. C., J. Phys. Chem. 99, 17071 (1995).Google Scholar
11. Nogueira, A. F., Durrant, J. R., and De Paoli, M. A. Adv. Mater. 13, 826 (2001).Google Scholar
12. Wu, J. H., Lan, Z., Lin, J. M., Huang, M. L., Hao, S. C., Sato, T., and Yin, S., Adv. Mater. 19, 4006 (2007).Google Scholar
13. Komiya, R., Han, L. Y., Yamanaka, R., Islam, A., and Mitate, T., J. Photochem. Photobio. A 164, 123 (2004).Google Scholar
14. Schmidt-Mende, L., and Grätzel, M., Thin Solid Films 500, 296 (2006).Google Scholar
15. O’Regan, B., Lenzmann, F., Muis, R., and Wienke, J., Chem. Mater. 14, 5023 (2002).Google Scholar
16. Yum, J. H., Chen, P., Grätzel, M., and Nazeeruddin, M. K., ChemSusChem 1, 699 (2008).Google Scholar
17. Bose, R. K., and Lau, K. K. S., Chem. Vap. Deposition 15, 150 (2009).Google Scholar
18. Bose, R. K., and Lau, K. K. S., Biomacromolecules 11, 2116 (2010).Google Scholar
19. Nazeeruddin, M. K., Kay, A., Rodicio, I., Humphrybaker, R., Muller, E., Liska, P., Vlachopoulos, N., and Grätzel, M., J. Am. Chem. Soc. 115, 6382 (1993).Google Scholar
20. Valiullin, R., Kortunov, P., Karger, J., and Timoshenko, V., J. Chem. Phys. 120, 11804 (2004).Google Scholar
21. Valiullin, R., Karger, J., and Glaser, R., Phys. Chem. Chem. Phys. 11, 2833 (2009).Google Scholar
22. Choi, J. G., Do, D. D., and Do, H. D., Ind. Eng. Chem. Res. 40, 4005 (2001).Google Scholar
23. Flory, P. J., Principles of Polymerization (Cornell University Press, Ithaca, NY, 1953).Google Scholar
24. Lau, K. K. S., and Gleason, K. K., Macromolecules 39, 3688 (2006).Google Scholar
25. Lau, K. K. S., and Gleason, K. K., Macromolecules 39, 3695 (2006).Google Scholar
26. Kern, R., Sastrawan, R., Ferber, J., Stangl, R., and Luther, J., Electrochim. Acta 47, 4213 (2002).Google Scholar
27. Moser, J., Punchihewa, S., Infelta, P. P., and Grätzel, M., Langmuir 7, 3012 (1991).Google Scholar
28. Redmond, G., and Fitzmaurice, D., J. Phys. Chem. 97, 1426 (1993).Google Scholar