Hostname: page-component-745bb68f8f-v2bm5 Total loading time: 0 Render date: 2025-01-12T19:09:10.623Z Has data issue: false hasContentIssue false

Improved Photon Absorption in a-Si:H Solar Cells using Photonic Crystal Architectures

Published online by Cambridge University Press:  01 February 2011

Rana Biswas
Affiliation:
biswasr@iastate.edu, Iowa State University, Physics & Astronomy, Micreoelctronics Res Ctr & Ames Lab, Ames, IA, 50011, United States, 515-294-6987, 515-294-0689
Dayu Zhou
Affiliation:
dzhou@iastate.edu, Iowa State University, Microelectronics Research Center and Department of Electrical and Computer Engineering, Ames, IA, 50011, United States
Get access

Abstract

Improved light-trapping is a major route to improving solar cell efficiencies. We design a combination of a 2-dimensional photonic crystal and a one-dimensional distributed Bragg reflector as the back reflector for a-Si:H solar cells. This configuration avoids inherent losses associated with textured back-reflectors. The photonic crystals are composed of ITO and can easily serve as a conducting back contact. We have optimized the geometry of the photonic crystal to maximize absorption using rigorous scattering matrix simulations. The photonic crystal provides strong diffraction of red and near-IR wavelengths within the absorber layer and can enhance the absorption by more than a factor of 10 relative to the case without the photonic crystal. The optical path length with the photonic crystal can improve over the limit for a random roughened scattering surface.

Type
Research Article
Copyright
Copyright © Materials Research Society 2008

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

[1] Yan, B. Owens, J. M. Jiang, C. Guha, S. Materials Res. Soc. Symp. Proc. 862, A23.3 (2005).Google Scholar
[2] Yablonovitch, E. J. Opt. Soc. Am. 72, 899 (1982).Google Scholar
[3] Nelson, J. The Physics of Solar Cells, (Imperial College Press, London, 2003), p. 279.Google Scholar
[4] Springer, J. Poruba, A. Mullerova, L. Vanecek, M. Kluth, O. and Rech, B. J. Appl. Phys. 95, 1427 (2004).Google Scholar
[5] Ferlauto, A.S. Ferreira, G. M. Pearce, J. M. Wronski, C. R. Collins, R. W. Deng, X. Ganguly, G. J. Appl. Phys. 92, 2424 (2002).Google Scholar
[6] Zeng, L. Yi, Y. Hong, C. Liu, J. Feng, N. Duan, X. Kimmerling, L.C. Alamariu, B.A. Appl. Phys. Lett. 89, 111111 (2006); Materials Res. Soc. Symp. 862, A12.3 (2005).Google Scholar
[7] Biswas, R. Ding, C.G. Puscasu, I. Pralle, M. McNeal, M. Daly, J. Greenwald, A. Johnson, E. Phys. Rev. B. 74, 045107 (2006).Google Scholar
[8] Biswas, R. Neginhal, S. Ding, C. G. Puscasu, I. Johnson, E. J. Opt. Soc. of Am. B 24, 2489 (2007).Google Scholar
[9] Li, Z. Y. and Lin, L. L. Phys. Rev. E 67, 046607 (2003).Google Scholar
[10] Biswas, R. and Zhou, D. Mater. Res. Soc. Symp. Proc. 989, A03.02 (2007).Google Scholar
[11] Bermel, P. et al. , Opt. Express 15, 16161 (2007).Google Scholar
[12] Zhou, D. and Biswas, R. to appear in J. Appl. Phys. 103, (2008).Google Scholar
[13] Catchpole, K.R. and Green, M. A. J. Appl. Phys. 101, 063105 (2007).Google Scholar