Hostname: page-component-745bb68f8f-b95js Total loading time: 0 Render date: 2025-01-12T08:03:27.874Z Has data issue: false hasContentIssue false

Impedance Spectroscopy and Structural Studies on Silver Doped Hydroxyapatite

Published online by Cambridge University Press:  31 January 2011

Brajendra Singh
Affiliation:
brajendr@gmail.com, IIT Kanpur, Physics, Kanpur, India
Samayendra Kumar
Affiliation:
samayend@iitk.ac.in, IIT Kanpur, Materials Science Programme, Kanpur, U.P., India
Bikramjit Basu
Affiliation:
bikram@iitk.ac.in, IIT Kanpur, Metallurgical and Materials Engineering, Kanpur, U.P., India
Rajeev Gupta
Affiliation:
guptaraj@iitk.ac.in, IIT Kanpur, Physics, Kanpur, India
Get access

Abstract

We report the structural transformation and the transport studies of Silver doped hydroxyapatites Ca10-xAgx(PO4)6(OH)2 (0.0 ≤ x ≤ 1.5). A dramatic increase in the conductivity by two orders of magnitude for hydroxyapatite in presence of silver ions is recorded using impedance spectroscopy measurements in the temperature range of 450°C to 650°C. The characteristic surface plasmon resonance effect is used to explore the presence of silver nano-particles, and Ag+ ions in hydroxyapatite using optical absorption measurements. The activation energy has been found to be 0.07 eV in silver doped composition in comparison to 0.39 eV for the parent hydroxyapatite. The sintering temperature dependence and compositional variation on the structural transformations from hydroxyapatite into tricalcium phosphate phases have been explored using Raman Spectroscopy and X-ray diffraction techniques.

Type
Research Article
Copyright
Copyright © Materials Research Society 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1 Kay, M. I. Young, R. A. and Posner, A. S. Nature 204, 1050 (1964).Google Scholar
2 Yamashita, K. Kitagaki, K. Umegaki, T. J. Am Ceram Soc, 78, 1191 (1995).Google Scholar
3 Kalil, M. Sh, Beheri, H.H. Fattah, W.I.A.. Ceram Int, 28, 451 (2002).Google Scholar
4 Gittings, J.P. Bowen, C.R. A.Dent, C.E. Turner, I.G. Baxter, F.R. Chaudhuri, J.B. Acta Biomaterialia 5, 743 (2009); B. S. H. Royce Ann NY Acad Sci, 238, 131 (1974).Google Scholar
5 Islam, M. Saiful, Tolchard, Julian R. and Slater, Peter R. Chem Comm, 1486 (2003).Google Scholar
6 Ali, R. Yashima, M. Matsushita, Y. Yoshioka, H. Ohoyama, K. and F. Izumi Chem. Mater., 20, 5203 (2008).Google Scholar
7 Laghzizil, A. Herch, N. El, Bouhaouss, A. Lorente, G. and Macquete, J. J. Solid State Chem., 156, 57 (2001).Google Scholar
8(a) Costa, A.M. Soares, G.A. Calixto, R. and Rossi, A.M., Key Engineering Materials. 254256, 119 (2004) (b) M. Mathew, L.W. Schroeder, B. Dickens, and W.E. Brown, Acta Crystallographica 33, 1325 (1977).Google Scholar
9 Cusco, R. Guitian, F. Aza, S. d. and Artus, L. Journal of the European Ceramic Society 18 1301 (1998).Google Scholar
10 Pettinger, Bruno, Bao, Xinhe, Wilcock, Ian, Muhler, Martin, Schlogl, Robert, and Ertl, Gerhard, Angew. Chem. Inf. Ed. End. 33, 85 (1994)Google Scholar
11 Hansen, W. N. and Prostak, A. Phase Rev. 174, 500 (1968).Google Scholar
12 Jiménez, J. A., Lysenko, S. and Liu, H. J. Appl. Phys. 104, 054313 (2008)Google Scholar