Hostname: page-component-745bb68f8f-mzp66 Total loading time: 0 Render date: 2025-01-27T00:12:52.506Z Has data issue: false hasContentIssue false

Impact of a Finite Shunt Resistance on the Dark Spectral Response of a-Si:H/μc-Si Thin-film Multi-junction Photovoltaic Devices

Published online by Cambridge University Press:  20 June 2011

Mauro Pravettoni
Affiliation:
University of Applied Science of Southern Switzerland, Institute of Applied Sustainability to the Built Environment (SUPSI-ISAAC), CH-6952 Canobbio, Switzerland Imperial College London, Blackett Laboratory, London, SW7 2BW, United Kingdom
Alessandro Virtuani
Affiliation:
University of Applied Science of Southern Switzerland, Institute of Applied Sustainability to the Built Environment (SUPSI-ISAAC), CH-6952 Canobbio, Switzerland
Get access

Abstract

Hydrogenated amorphous silicon (a-Si:H) multi-junction devices have demonstrated a way to increase the efficiency of a-Si:H thin-film photovoltaic (PV) modules, which is now well above 10%. Since the current–matching behaviour of all sub-cells is a critical aspect, the measurement of the spectral response (SR) of all junctions provides valuable information to optimize the device performance under a given spectral distribution. In this work the authors investigate the impact of low shunt resistances on the SR of a double-junction a-Si:H/μc-Si PV module. The origin of a low shunt resistance in a-Si:H multi-junction devices is revised. A simple theoretical approach is then used to describe the anomalous dark SR observed experimentally as a consequence of the presence of low shunt resistances. The dark SR allows therefore to detect the presence of shunts and discriminate the defective sub-cell.

Type
Research Article
Copyright
Copyright © Materials Research Society 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Green, M. A., Emery, K., Hishikawa, Y. and Warta, W., Prog. Photovolt: Res. Appl. 19, 84 (2011).10.1002/pip.1088Google Scholar
2. Bailat, J., Fesquet, L., Orhan, J-B., Djeridane, Y., Wolf, B., Madliger, P., Steinhauser, J., Benagli, S., Borrello, D., Castens, L., Monteduro, G., Marmelo, M., Dehbozorghi, B., Vallat-Sauvain, E., Multone, X., Romang, D., Boucher, J-F., Meier, J., Kroll, U., Despeisse, M., Bugnon, G., Ballif, C., Marjanovic, S., Kohnke, G., Borrelli, N., Koch, K., Liu, J., Modavis, R., Thelen, D., Vallon, S., Zakharian, A. and Weidman, D., Proceedings of the 25th EU PVSEC, edited by De Santi, G. F., Ossenbrink, H., Helm, P. WIP – Renewable Energies, Munich, 2010) pp. 27202723.Google Scholar
3. Pravettoni, M., Tzamalis, G., Anika, K., Polverini, D. and Müllejans, H., Mater. Res. Soc. Symp. Proc. Vol. 1245, 1245-A13-06 (2010).10.1557/PROC-1245-A13-06Google Scholar
4. ASTM Standard E2236, 2010, West Conshohocken, PA, 2003, DOI: 10.1520/E2236-10, www.astm.org.10.1520/E2236-10Google Scholar
5. Rubinelli, F. A., Stolk, R. L., Sturiale, A., Rath, J. K. and Schropp, R. E. I., J. Non-Cryst. Solids 352, 1876 (2006).10.1016/j.jnoncrysol.2006.02.014Google Scholar
6. Pravettoni, M., Galleano, R., Virtuani, A., Müllejans, H. and Dunlop, E. D., Meas. Sci. Technol. 22, 045902 (10pp) (2011).10.1088/0957-0233/22/4/045902Google Scholar
7. Virtuani, A., Lotter, E. and Powalla, M., Thin Solid Films 443, 431 (2003).Google Scholar
8. Virtuani, A., Lotter, E., Powalla, M., Rau, U., Werner, J. H. and Acciarri, M., Jour. Appl. Phys. 99, 014906 (2006).10.1063/1.2159548Google Scholar
9. Phyton, M., Madani, O., Dominé, D., Meillaud, F., Vallat-Sauvain, E. and Ballif, C., Sol. En. Mat. Sol Cells 93, 1714 (2009).Google Scholar