Published online by Cambridge University Press: 15 February 2011
A contactless high spatial resolution technique has been developed to characterize semiconductor materials using the Near-Field Scanning Optical Microscope. The technique can be used to non-invasively measure: surface topography, defect content, and carrier lifetime variations in silicon. The success of the technique relies on the sensitive detection of changes in infrared transmission induced by local generation of free carriers using pulsed visible radiation. Here we extend the application of this technique to characterize silicon on insulator materials. We also include computer simulation results to address the role played by diffusion in the ultimate lateral resolution that can be achieved using this technique.